1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cupoosta [38]
4 years ago
6

How do you graph -2x+3y=12

Mathematics
1 answer:
jeka57 [31]4 years ago
4 0

Answer:

y= 2 /3 x+4 now graph it

Step-by-step explanation:

You might be interested in
Which statement is true? I am giving a lot of points away for this so please provide the correct answer and an explanation.
ikadub [295]

Answer:

the second option from the top

7 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=y%20%3D%205x%20%20%2B%201" id="TexFormula1" title="y = 5x + 1" alt="y = 5x + 1" align="absmi
zepelin [54]

Answer:

5+5  and 5x1

Step-by-step explanation:

that is the answer

6 0
3 years ago
Pleeease open the image and hellllp me
Verdich [7]

1. Rewrite the expression in terms of logarithms:

y=x^x=e^{\ln x^x}=e^{x\ln x}

Then differentiate with the chain rule (I'll use prime notation to save space; that is, the derivative of <em>y</em> is denoted <em>y' </em>)

y'=e^{x\ln x}(x\ln x)'=x^x(x\ln x)'

y'=x^x(x'\ln x+x(\ln x)')

y'=x^x\left(\ln x+\dfrac xx\right)

y'=x^x(\ln x+1)

2. Chain rule:

y=\ln(\csc(3x))

y'=\dfrac1{\csc(3x)}(\csc(3x))'

y'=\sin(3x)\left(-\cot^2(3x)(3x)'\right)

y'=-3\sin(3x)\cot^2(3x)

Since \cot x=\frac{\cos x}{\sin x}, we can cancel one factor of sine:

y'=-3\dfrac{\cos^2(3x)}{\sin(3x)}=-3\cos(3x)\cot(3x)

3. Chain rule:

y=e^{e^{\sin x}}

y'=e^{e^{\sin x}}\left(e^{\sin x}\right)'

y'=e^{e^{\sin x}}e^{\sin x}(\sin x)'

y'=e^{e^{\sin x}+\sin x}\cos x

4. If you're like me and don't remember the rule for differentiating logarithms of bases not equal to <em>e</em>, you can use the change-of-base formula first:

\log_2x=\dfrac{\ln x}{\ln2}

Then

(\log_2x)'=\left(\dfrac{\ln x}{\ln 2}\right)'=\dfrac1{\ln 2}

So we have

y=\cos^2(\log_2x)

y'=2\cos(\log_2x)\left(\cos(\log_2x)\right)'

y'=2\cos(\log_2x)(-\sin(\log_2x))(\log_2x)'

y'=-\dfrac2{\ln2}\cos(\log_2x)\sin(\log_2x)

and we can use the double angle identity and logarithm properties to condense this result:

y'=-\dfrac1{\ln2}\sin(2\log_2x)=-\dfrac1{\ln2}\sin(\log_2x^2)

5. Differentiate both sides:

\left(x^2-y^2+\sin x\,e^y+\ln y\,x\right)'=0'

2x-2yy'+\cos x\,e^y+\sin x\,e^yy'+\dfrac{xy'}y+\ln y=0

-\left(2y-\sin x\,e^y-\dfrac xy\right)y'=-\left(2x+\cos x\,e^y+\ln y\right)

y'=\dfrac{2x+\cos x\,e^y\ln y}{2y-\sin x\,e^y-\frac xy}

y'=\dfrac{2xy+\cos x\,ye^y\ln y}{2y^2-\sin x\,ye^y-x}

6. Same as with (5):

\left(\sin(x^2+\tan y)+e^{x^3\sec y}+2x-y+2\right)'=0'

\cos(x^2+\tan y)(x^2+\tan y)'+e^{x^3\sec y}(x^3\sec y)'+2-y'=0

\cos(x^2+\tan y)(2x+\sec^2y y')+e^{x^3\sec y}(3x^2\sec y+x^3\sec y\tan y\,y')+2-y'=0

\cos(x^2+\tan y)(2x+\sec^2y y')+e^{x^3\sec y}(3x^2\sec y+x^3\sec y\tan y\,y')+2-y'=0

\left(\cos(x^2+\tan y)\sec^2y+x^3\sec y\tan y\,e^{x^3\sec y}-1\right)y'=-\left(2x\cos(x^2+\tan y)+3x^2\sec y\,e^{x^3\sec y}+2\right)

y'=-\dfrac{2x\cos(x^2+\tan y)+3x^2\sec y\,e^{x^3\sec y}+2}{\cos(x^2+\tan y)\sec^2y+x^3\sec y\tan y\,e^{x^3\sec y}-1}

7. Looks like

y=x^2-e^{2x}

Compute the second derivative:

y'=2x-2e^{2x}

y''=2-4e^{2x}

Set this equal to 0 and solve for <em>x</em> :

2-4e^{2x}=0

4e^{2x}=2

e^{2x}=\dfrac12

2x=\ln\dfrac12=-\ln2

x=-\dfrac{\ln2}2

7 0
3 years ago
The black graph is the graph of y=f(x). Choose the equation for the red graph.
Makovka662 [10]

Answer:

y-1 = f(x)

Step-by-step explanation:

Here, we want to choose the equation for the ref graph

The red graph as we can see is above the black

This means it is more positive

The difference between the two is just 1 unit

By the addition of 1 to the y-value of the black graph, we get the red

Thus, we have that;

y- 1 = f(x)

6 0
3 years ago
What is m in the simultaneous equation <br> M -n=1<br><br> M+n=3
Lady bird [3.3K]
The simultaneous equations is missing +8
8 0
3 years ago
Read 2 more answers
Other questions:
  • How to build a 6-digit number with decimals
    5·2 answers
  • I need help someone pleace
    15·1 answer
  • What is the volume of a sphere with a radius of 18 units
    9·1 answer
  • Simplify the expression. (x1/8 y1/4)2
    11·1 answer
  • A ball is launched into the air from a height of 12 feet at time t = 0. The function that models this situation is h(t) = -2t2 +
    15·2 answers
  • Hiiiiiiiiiiiiiiiiiiiii
    15·1 answer
  • Calculate the interest for the loan amount $630,829.85 at 2.5% interest rate for 30 years.
    12·1 answer
  • If g(x)=2x+1 and h(x)=x-2 then find (g-h)(x)
    7·1 answer
  • Solve. Show all steps. 0.5 (8-2x)= 3-(x - 1 )
    8·1 answer
  • There is a line through the origin that divides the region bounded by the parabola and the x-axis into two regions with equal ar
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!