Answer:
C
Step-by-step explanation:
Answer:
a. attached graph; zero real: 2
b. p(x) = (x - 2)(x + 3 + 3i)(x + 3 - 3i)
c. the solutions are 2, -3-3i and -3+3i
Step-by-step explanation:
p(x) = x³ + 4x² + 6x - 36
a. Through the graph, we can see that 2 is a real zero of the polynomial p. We can also use the Rational Roots Test.
p(2) = 2³ + 4.2² + 6.2 - 36 = 8 + 16 + 12 - 36 = 0
b. Now, we can use Briott-Ruffini to find the other roots and write p as a product of linear factors.
2 | 1 4 6 -36
1 6 18 0
x² + 6x + 18 = 0
Δ = 6² - 4.1.18 = 36 - 72 = -36 = 36i²
√Δ = 6i
x = -6±6i/2 = 2(-3±3i)/2
x' = -3-3i
x" = -3+3i
p(x) = (x - 2)(x + 3 + 3i)(x + 3 - 3i)
c. the solutions are 2, -3-3i and -3+3i
Answer:
The volume of the ball with the drilled hole is:

Step-by-step explanation:
See attached a sketch of the region that is revolved about the y-axis to produce the upper half of the ball. Notice the function y is the equation of a circle centered at the origin with radius 15:

Then we set the integral for the volume by using shell method:

That can be solved by substitution:

The limits of integration also change:
For x=5: 
For x=15: 
So the integral becomes:

If we flip the limits we also get rid of the minus in front, and writing the root as an exponent we get:

Then applying the basic rule we get:

Since that is just half of the solid, we multiply by 2 to get the complete volume:


Rhombus, rectangle, square these have lines of symmetry. others i am not much sure