When comparing the functions using the equation, which conclusion can be made?
1 answer:
Answer:
domain of f(x) is x ≤ 0; domain of f^-1(x) is x ≥ 4
Step-by-step explanation:
The square root function will always give a positive value, so the opposite of the square root function will give non-≤positive values. That means ...
- the domain of f(x) is restricted to non-positive values
- the domain of the inverse function is restricted to values of x that make the root be of a non-negative number: x ≥ 4
The domain of f(x) is x ≤ 0; the domain of f^-1(x) is x ≥ 4.
You might be interested in
Answer:
the one you have marker is correct
Step-by-step explanation:
Answer:

<h3><u>For the 1st part</u></h3>




<h3><u>For the 2nd part</u></h3>
<u />



For this case we must simplify the following expression:
![\sqrt [3] {64 * a ^ 6 * b ^ 7 * c ^ 9}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B64%20%2A%20a%20%5E%206%20%2A%20b%20%5E%207%20%2A%20c%20%5E%209%7D)
We rewrite:

So:
![\sqrt [3] {4 ^ 3 * (a ^ 2) ^ 3 * (b ^ 2) ^ 3 * b * (c ^ 3) ^ 3} =\\\sqrt [3] {4 * a ^ 2 * b ^ 2 * c ^ 3) ^ 3 * b} =](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B4%20%5E%203%20%2A%20%28a%20%5E%202%29%20%5E%203%20%2A%20%28b%20%5E%202%29%20%5E%203%20%2A%20b%20%2A%20%28c%20%5E%203%29%20%5E%203%7D%20%3D%5C%5C%5Csqrt%20%5B3%5D%20%7B4%20%2A%20a%20%5E%202%20%2A%20b%20%5E%202%20%2A%20c%20%5E%203%29%20%5E%203%20%2A%20b%7D%20%3D)
By definition of properties of powers and roots we have:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
So:
![4a ^ 2b ^ 2 c ^ 3 \sqrt [3] {b}](https://tex.z-dn.net/?f=4a%20%5E%202b%20%5E%202%20c%20%5E%203%20%5Csqrt%20%5B3%5D%20%7Bb%7D)
Answer:
Option B
Answer:
d ≤ -0.5
Step-by-step explanation:
Multiply each term by -1
Answer:
1,2,5
Step-by-step explanation: