Let length, width, and height be s.
Then diagonal of any face would be √( s² + s² ) = √( 2s² )
And we know that it measures √( 500 ) so that's sufficient for us to figure out the length of an edge of the cube. We do not need to worry about the diagonal of the cube.
Now we have to solve √( 500 ) = √( 2s² )
Square both sides:
500 = 2s²
Divide both sides by 2:
250 = s²
Take the square root of both sides:
√(250) = s ≈ 15.8113883
Rounding to nearest tenth:
s ≈ 15.8
Final answer: 15.8
Hope this helps.
Answer:
t=5.5080( to 3 d.p)
Step-by-step explanation:
From the data given,
n =20
Deviation= 34/20= 1.7
Standard deviation (sd)= 1.3803(√Deviation)
Standard Error = sd/√n
= 1.3803/V20 = 0.3086
Test statistic is:
t = deviation /SE
= 1.7/0.3086 = 5.5080
ndf = 20 - 1 = 19
alpha = 0.01
One Tailed - Right Side Test
From Table, critical value of t =2.5395
Since the calculated value of t = 5.5080 is greater than critical value of t = 2.5395, the difference is significant. Reject null hypothesis.
t score = 5.5080
ndf = 19
One Tail - Right side Test
By Technology, p - value = 0.000
Since p - value is less than alpha , reject null hypothesis.
Conclusion:
From the result obtained it can be concluded that ,the data support the claim that the mean rating assigned to the wine when the cost is described as $90 is greater than the mean rating assigned to the wine when the cost is described as $10.
Answer:
The new TV screen is 12.1 centimeters wide.
Step-by-step explanation:
Find 10% of 11:
0.10 x 11 = 1.1
Add 1.1 to the original size.
11 + 1.1 = 12.1
hope this helps
Answer:
y >= 8
Step-by-step explanation:
This equation is written in vertex notation, so we know the vertex is (-5,8). The parabola opens upward because the coefficient of the squared term is positive. Therefore, the vertex is the minimum, meaning all y values will be greater than (or equal to) the y-coordinate of the vertex (which is 8). When we convert this into a mathematical inequality, we get y>=8.