Answer:
6.3333333333333333333333333333333333333333333333333333333333
Step-by-step explanation:
19/3=6.3333333333333333333333333
Triangle JKL has vertices J(2,5), K(1,1), and L(5,2). Triangle QNP has vertices Q(-4,4), N(-3,0), and P(-7,1). Is (triangle)JKL
Tems11 [23]
Answer:
Yes they are
Step-by-step explanation:
In the triangle JKL, the sides can be calculated as following:
=> JK = 
=> JL = 
=> KL = 
In the triangle QNP, the sides can be calculate as following:
=> QN = ![\sqrt{[-3-(-4)]^{2} + (0-4)^{2} } = \sqrt{1^{2}+(-4)^{2} } = \sqrt{1+16}=\sqrt{17}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-3-%28-4%29%5D%5E%7B2%7D%20%2B%20%280-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B1%5E%7B2%7D%2B%28-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B1%2B16%7D%3D%5Csqrt%7B17%7D)
=> QP = ![\sqrt{[-7-(-4)]^{2} + (1-4)^{2} } = \sqrt{(-3)^{2}+(-3)^{2} } = \sqrt{9+9}=\sqrt{18} = 3\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-7-%28-4%29%5D%5E%7B2%7D%20%2B%20%281-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B%28-3%29%5E%7B2%7D%2B%28-3%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B9%2B9%7D%3D%5Csqrt%7B18%7D%20%3D%203%5Csqrt%7B2%7D)
=> NP = ![\sqrt{[-7-(-3)]^{2} + (1-0)^{2} } = \sqrt{(-4)^{2}+1^{2} } = \sqrt{16+1}=\sqrt{17}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-7-%28-3%29%5D%5E%7B2%7D%20%2B%20%281-0%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B%28-4%29%5E%7B2%7D%2B1%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B16%2B1%7D%3D%5Csqrt%7B17%7D)
It can be seen that QPN and JKL have: JK = QN; JL = QP; KL = NP
=> They are congruent triangles
Answer:
20 x 1 / 18= 1.11
Step-by-step explanation:
Answer:
2 yrs
Step-by-step explanation:
SI =PTR/100
738=8200 x T x 4.5 /100
738 x 100 / 8200 x 4.5 = T
T =2
The answer would be C.
Sin2 cot2=sin2*cos2/sin2=cos2
Which is not equal to the others.
Hope this helps:)