Answer:
3x-4y-6x+28y
-3x-6x-4y+28y
-9x+24y
Step-by-step explanation:
Answer:
0.25 lbs
<h3>Explanation </h3>
You can translate the 1/2 a pound into 0.5lbs, which is equivalent. Then, this is the easier part. Sarah divides the clay into <u>t</u><u>w</u><u>o</u> equal pieces. This is asking you to halve 0.5lbs. The answer being 0.25lbs
Answer:
Step-by-step explanation:
Given the equations
solving the system of the equation by elimination method
solve 45y=5 for y:
solve for x:
Add 36 to both sides
Answer:
Step-by-step explanation:
1 In general, given a{x}^{2}+bx+cax
2
+bx+c, the factored form is:
a(x-\frac{-b+\sqrt{{b}^{2}-4ac}}{2a})(x-\frac{-b-\sqrt{{b}^{2}-4ac}}{2a
2a
−b+√
b
2
−4ac
)(x−
2a
−b−√
b
2
−4ac
)
2 In this case, a=1a=1, b=-2b=−2 and c=-2c=−2.
(x-\frac{2+\sqrt{{(-2)}^{2}-4\times -2}}{2})(x-\frac{2-\sqrt{{(-2)}^{2}-4\times -2}}{2})(x−
2
2+√
(−2)
2
−4×−2
)(x−
2
2−√
(−2)
2
−4×−2
)
3 Simplify.
(x-\frac{2+2\sqrt{3}}{2})(x-\frac{2-2\sqrt{3}}{2})(x−
2
2+2√
3
)(x−
2
2−2√
3
)
4 Factor out the common term 22.
(x-\frac{2(1+\sqrt{3})}{2})(x-\frac{2-2\sqrt{3}}{2})(x−
2
2(1+√
3
)
)(x−
2
2−2√
3
)
5 Cancel 22.
(x-(1+\sqrt{3}))(x-\frac{2-2\sqrt{3}}{2})(x−(1+√
3
))(x−
2
2−2√
3
)
6 Simplify brackets.
(x-1-\sqrt{3})(x-\frac{2-2\sqrt{3}}{2})(x−1−√
3
)(x−
2
2−2√
3
)
7 Factor out the common term 22.
(x-1-\sqrt{3})(x-\frac{2(1-\sqrt{3})}{2})(x−1−√
3
)(x−
2
2(1−√
3
)
)
8 Cancel 22.
(x-1-\sqrt{3})(x-(1-\sqrt{3}))(x−1−√
3
)(x−(1−√
3
))
9 Simplify brackets.
(x-1-\sqrt{3})(x-1+\sqrt{3})(x−1−√
3
)(x−1+√
3
)
The equation of a circle is written as (x-h)^2 +(y-k)^2 = r^2
h and K are the center points of the circle and r is the radius.
replace the letters with the provided center and radius:
(x- (-7))^2 + (y- (-3))^2 = 2^2
Simplify:
(x+7)^2 + (y+3)^2 = 4