1c. New Value=64.8 and Decrease=15.2
1e. Original Value= $70 and Decrease=$21
1f) Original Level=11 and New value=44
Answer:
Step-by-step explanation:
(B^2)(B^4) = B^(2+4)= B^6
answer is B
Answer:
1492.88
Step-by-step explanation:
V = πr^2 h/3
3.14 × 18^2
3.14 × 324 = 1017.36
1017.36 × 4.4 = 4476.384
4476.384 ÷ 3 = 1492.88
Hope this helped.
<h3>
Answer:</h3>
(1, 1), (4, -25)
<h3>
Step-by-step explanation:</h3>
You can evaluate the function to see.
f(-1) = -3^(-1-1)+2 = -3^(-2)+2 = -1/9 +2 ≠ 2
f(1) = -3^(1-1) +2 = -1 +2 = 1
f(0) = -3^(0-1) +2 = -1/3 +2 ≠ 0
f(4) = -3^(4 -1) +2 = -27 +2 = -25
_____
Or, you can graph the points and the curve.
At the start, the tank contains
(0.02 g/L) * (1000 L) = 20 g
of chlorine. Let <em>c</em> (<em>t</em> ) denote the amount of chlorine (in grams) in the tank at time <em>t </em>.
Pure water is pumped into the tank, so no chlorine is flowing into it, but is flowing out at a rate of
(<em>c</em> (<em>t</em> )/(1000 + (10 - 25)<em>t</em> ) g/L) * (25 L/s) = 5<em>c</em> (<em>t</em> ) /(200 - 3<em>t</em> ) g/s
In case it's unclear why this is the case:
The amount of liquid in the tank at the start is 1000 L. If water is pumped in at a rate of 10 L/s, then after <em>t</em> s there will be (1000 + 10<em>t</em> ) L of liquid in the tank. But we're also removing 25 L from the tank per second, so there is a net "gain" of 10 - 25 = -15 L of liquid each second. So the volume of liquid in the tank at time <em>t</em> is (1000 - 15<em>t </em>) L. Then the concentration of chlorine per unit volume is <em>c</em> (<em>t</em> ) divided by this volume.
So the amount of chlorine in the tank changes according to

which is a linear equation. Move the non-derivative term to the left, then multiply both sides by the integrating factor 1/(200 - 5<em>t</em> )^(5/3), then integrate both sides to solve for <em>c</em> (<em>t</em> ):


![\dfrac{\mathrm d}{\mathrm dt}\left[\dfrac{c(t)}{(200-3t)^{5/3}}\right]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5B%5Cdfrac%7Bc%28t%29%7D%7B%28200-3t%29%5E%7B5%2F3%7D%7D%5Cright%5D%3D0)


There are 20 g of chlorine at the start, so <em>c</em> (0) = 20. Use this to solve for <em>C</em> :

![\implies\boxed{c(t)=\dfrac1{200}\sqrt[3]{\dfrac{(200-3t)^5}5}}](https://tex.z-dn.net/?f=%5Cimplies%5Cboxed%7Bc%28t%29%3D%5Cdfrac1%7B200%7D%5Csqrt%5B3%5D%7B%5Cdfrac%7B%28200-3t%29%5E5%7D5%7D%7D)