Answer: It’s b - 33 home runs
Step-by-step explanation:
Answer:
The probability that at least 280 of these students are smokers is 0.9664.
Step-by-step explanation:
Let the random variable <em>X</em> be defined as the number of students at a particular college who are smokers
The random variable <em>X</em> follows a Binomial distribution with parameters n = 500 and p = 0.60.
But the sample selected is too large and the probability of success is close to 0.50.
So a Normal approximation to binomial can be applied to approximate the distribution of X if the following conditions are satisfied:
1. np ≥ 10
2. n(1 - p) ≥ 10
Check the conditions as follows:

Thus, a Normal approximation to binomial can be applied.
So,

Compute the probability that at least 280 of these students are smokers as follows:
Apply continuity correction:
P (X ≥ 280) = P (X > 280 + 0.50)
= P (X > 280.50)

*Use a <em>z</em>-table for the probability.
Thus, the probability that at least 280 of these students are smokers is 0.9664.
Answer:
<u>Part 1</u>
<u>Sideways or "horizontal" parabola</u> with a horizontal axis of symmetry.
<u>Part 2</u>
The vertex is the turning point: (-3, 1)
<u>Part 3</u>
Vertex form of a horizontal parabola:
where:
- (h, k) is the vertex
- a is some constant
If a > 0 the parabola opens to the right.
If a < 0 the parabola opens to the left.
Point on the curve: (-1, 2)
Substituting the vertex and the found point into the formula and solving for a:



<u>Part 4</u>
Equation for the given parabola in vertex form:

Equation in standard form:

Answer: 
Step-by-step explanation:
The solution to the graph of a system of equations is where they intercept. Here, it is at about
.