9514 1404 393
Answer:
3.67 years
Step-by-step explanation:
The amount is found using the compound interest formula.
A = P(1 +r/n)^(nt)
for principal P invested at annual rate r compounded n times per year for t years.
We can solve this for t:
A/P = (1 +r/n)^(nt) . . . . divide by P
log(A/P) = (nt)log(1 +r/n) . . . . take the logarithm
t = log(A/P)/(n·log(1 +r/n)) . . . . divide by the coefficient of t
Filling in the given values, we find ...
t = log(12000/10000)/(4·log(1 +0.05/4)) ≈ 3.6692
It will take about 3.67 years for the balance to reach $12,000.
To find Tim's overall score, first we must find the sum of his scores from quizzes, notes, and tests.
Hence, we have
quizzes = (5 + 2 + 9) = 16/3
notes = (3 + 9 + 5)/3 = 17/3
tests = (9 + 5 + 9)/3 = 23/3
Now, we must consider the percentage that these tests contribute to his overall score. So we have the following:
quizzes = 0.5(16)/3 = 8/3
notes = 0.2(17)/3 = 3.4/3
tests = 0.3(23)/3 = 6.9/3
We now add these to find the overall score which is 8 /3+ 3.4/3 + 6.9/3 = 18.3/3 = 6.1.
Thus, Tim's overall score is 6.1.
Answer: 6.1
Answer:
2884 pieces
Step-by-step explanation:
First you have to multiply 2 and 226:
2 x 266 = 532
Then you have to multiply 4 and 558:
4 x 558 = 2352
After that you have add those two to make your answer:
532 + 2352 = 2884
There is your answer.