Since there are no figures given, I will give an example.
You are given a silo that is shaped as
a closed cylinder with a conical end. The diameter of the silo is 4 ft, the
length of the cylindrical part is 6 ft, and the entire length of the silo is
10.5 ft. Suppose that you are asked to find the total volume of
grains that can be stored in the silo.
Given:
Cylinder part
D = 4 ft
H = 6 ft
Cone part
H = 10.5 – 6 = 4.5ft
D = 4ft
Required:
Volume of silo
Solution:
V of cylinder = πr²H
V of cylinder = π(4/2)²(6)
V of cylinder = 75.4 ft³
V of cone = πr²H/3
V of cone = π(4/2)²(4.5/3)
V of cone = 18.85 ft³
Total volume = 94.25 ft³
You will have to set up a system of equations
We have two points so we can find the gradient using y1-y2/x1-x2
gradient = 21-27/2-8
= 1
we know the form for any linear equation is y = mx + c
we have m and a point so we can substitute in point (2,21) to find c
21 = 1 x 2 + c
c = 19
therefore, the equation is y = x + 19
Answer:
L = 25
Step-by-step explanation:
Let's call the Length x and width x - 15 since the width is 15 less than length
Eric needs 70 of fencing in total, the perimeter of a rectangle is calculated by adding all sides
x + x + (x - 15) + (x - 15) = 70 add like terms
4x - 30 = 70 add 30 to both sides
4x = 100 divide both sides by 4
x = 25
Base = length * width.
We know that the base has an area of 10
And 60 is the volume. Then 60 / 10 = 6 Which is the height.