Consider the following function. f(x) = 9 − x2/3 Find f(−27) and f(27). f(−27) = f(27) = Find all values c in (−27, 27) such tha
t f '(c) = 0. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) c = Based off of this information, what conclusions can be made about Rolle's Theorem? This contradicts Rolle's Theorem, since f is differentiable, f(−27) = f(27), and f '(c) = 0 exists, but c is not in (−27, 27). This does not contradict Rolle's Theorem, since f '(0) = 0, and 0 is in the interval (−27, 27). This contradicts Rolle's Theorem, since f(−27) = f(27), there should exist a number c in (−27, 27) such that f '(c) = 0. This does not contradict Rolle's Theorem, since f '(0) does not exist, and so f is not differentiable on (−27, 27). Nothing can be concluded.
1 answer:
You might be interested in
The answer is b
If you plug those values on a graph it will show a straight line.
By moving the signs he actually changed the number itself. He changed -6 from a negative to a positive and 5 from a positive to a negative. Both equations give different answers.
Hopefully this helps :)
Answer:
1.3
Step-by-step explanation: