First you graph it using a graphing calculator, you look at the table of values to find out one point in which y= 0. The first one that comes up is when x=1.
If you don't have a graphing calculator you can use trial and error by inputing some numbers into x until you get y= 0.
Once you have an x value which makes y=0, you can start factorizing it.
you divide 6x3 +4x2 -6x - 4 into (x-1) which is when y =0
to get 6x2+10x+4
This can be used to write the polynomial as (x-1)(6x2 +10x+4)
you then factorize the second bracket, 6x2 +10x+4.
you can take the 2 outside to give you 2(3x2 +5x+2)
you can factorize this to become 2(3x+2)(x+1)
Now you just substitute your factorized second bracket into your unfactorized second bracket to give you 2(3x+2)(x+1)(x-1).
From this you can deduce that k= 1
Hi!
I believe the answer is D , because the common denominator is 12 .
3 times 4=12
4 times 3=12
2 times 6= 12
You multiply each fraction by 12/1 .
Hope it helps and have a wonderful day !
Answer:
The minimum value of the bill that is greater than 95% of the bills is $37.87.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What are the minimum value of the bill that is greater than 95% of the bills?
This is the 95th percentile, which is X when Z has a pvalue of 0.95. So X when Z = 1.645.




The minimum value of the bill that is greater than 95% of the bills is $37.87.
The molecules in the sugar dissolved in water. it did not dissociate though, just dissolved. the atoms in each individual molecule stayed in tact, but the intermolecular forces broke apart.
Given that the distance between two lines in the measurement instrument is 0.01m, the maximum error should be 0.01m/2 = 0.005 m.
If you do a good work, the real measure is 1.20m +/- 0.005m, this is between 1.195 and 1.205.