Answer:

What is the degree of polynomial?

The degree of a polynomial is the highest of the degrees of the polynomial's monomials with non-zero coefficients.
Example:

4x The Degree is 1 (a variable without an
exponent actually has an exponent of 1)
More Examples:
4x^ − x + 3 The Degree is 3 (largest exponent of x)
x^2 + 2x^5 − x The Degree is 5 (largest exponent of x)
z^2 − z + 3 The Degree is 2 (largest exponent of z)
A constant polynomials (P(x) = c) has no variables. Since there is no exponent to a variable, therefore the degree is 0.
3 is a polynomial of degree 0.
Because the coefficient of x^2 is -1, we know that a will be -1. Knowing that the coefficient of x is -4, we can calculate that p=2. Thus, we have -1(x+2)^2+q is our equation. This is equal to -x^2-4x-4+q. As the constant term must be 2, we can then see that q is 6.
As such, we have -1(x+2)^2+6=0 as our factorization.
To solve this equation, we can use the quadratic formula. Plugging in values, we have:

which is equal to: (when the fraction is simplified)
Answer:
15.87% is the chance that Scott takes more than 4.25 minutes to solve a problem at an academic bowl.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 4 minutes
Standard Deviation, σ = 0.25 minutes
We standardize the given data.
Formula:
P(more than 4.25 minutes to solve a problem)
Calculation the value from standard normal z table, we have,
Thus,15.87% is the chance that Scott takes more than 4.25 minutes to solve a problem at an academic bowl.
Answer:
23.52 cm
Step-by-step explanation: