Answer:
c
-207
Step-by-step explanation:
Create an inequality and solve for c:
-23
Multiply by 9 on each side:
c
-207 is the answer
Answer:
.
Step-by-step explanation:
Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".
The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"
If we assume that we have
groups (A,B,C) and on each group we have sample of size (6,5,6) respectively , on each group we can define the following formulas of variation:
And we have this property
The degrees of freedom for the numerator on this case is given by
where k =3 represent the number of groups.
The degrees of freedom for the denominator on this case is given by
.
And the total degrees of freedom would be
On this case the correct answer would be 2 for the numerator and 14 for the denominator.
Best answer
14
11-5=6
18-11-7
26-18=8
........... so on and so forth.
I think you get the point.
Answer:
Exponential decay.
Step-by-step explanation:
You can use a graphing utility to check this pretty quickly, but you can also look at the equation and get the answer. Since the function has a variable in the exponent, it definitely won't be a linear equation. Quadratic equations are ones of the form ax^2 + bx + c, and your function doesn't look like that, so already you've ruled out two answers.
From the start, since we have a variable in the exponent, we can recognize that it's exponential. Figuring out growth or decay is a little more complicated. Having a negative sign out front can flip the graph; having a negative sign in the exponent flips the graph, too. In your case, you have no negatives; just 2(1/2)^x. What you need to note here, and you could use a few test points to check, is that as x gets bigger, (1/2) will get smaller and smaller. Think about it. When x = 0, 2(1/2)^0 simplifies to just 2. When x = 1, 2(1/2)^1 simplifies to 1. Already, we can tell that this graph is declining, but if you want to make sure, try a really big value for x, like 100. 2(1/2)^100 is a value very very very veeery close to 0. Therefore, you can tell that as the exponent gets larger, the value of the function goes down and gets closer and closer to zero. This means that it can't be exponential growth. In the case of exponential growth, as the exponent gets bigger, your output should increase, too.
The answer is 15/6 (5+5+5)/6