They both have to be above the x axis, which makes B incorrect. B will be below the x axis. If you have a graphing calculator or know where there is one of the net, you can try it.
A and D are both wrong. The 1/2 does not become 2. What will happen is that 2 will make the graph wider.
There's only 1 answer left and that is
C <<<<<===== answer.
C reflects right across the y axis.
A........................
Answer:
The answer is 15^3
Step-by-step explanation:
L*W*H
4*1 1/2*2 1/2
Answer:
n squared + 3n + 1
Step-by-step explanation:
5,11,19,29
Firstly look at the difference between each number. The first difference is 6 then 8 then 10 etc. After that you look at your created sequence - 6,8,10 etc. The difference is 2 each time. Then applying rules, you have to do the constant difference divided by 2 to get a coefficient of n squared. So in this case it's n squared because 2/2 = 1 so you don't have to place a 1 in front of the n squared. After you create a sequence from the n squared. That would be 1,4,9 etc. Then you need to see how to get from the sequence: 1,4,9 etc to your original sequence: 5,11,19 etc. So if you calculate it you will get 4,7,10 because firstly 5-1 = 4 then 11-4 = 7 etc. The sequence 4,7,10 is a linear sequence so the constant difference is 3 each time. So to get a nth term of a linear sequence you will start off as 3n then you will substitute 1 then 2 then 3 into the 3n. Therefore that would be 3,6 etc. So if you take the first substituted term, that would be 3 as said before then you will have to see how to get from the 3 to 4 so that is just adding 1. So the nth term of this linear sequence is 3n + 1. Check if it works at the end. So the overall nth term of the quadratic sequence is n squared as said before + 3n + 1.
Refer to the figure shown below.
We shall review each of the three given measurements and decide what type of triangle we have.
Measurement a.
a=3, b=4, c=5.
For a right triangle, c² = a² + b² (Pythagorean theorem)
a² + b² = 3² + 4² = 9 + 16 = 25
c² = 5² = 25
Answer:
This is a right triangle, because c² = a² + b².
Measurement b.
a=5, b=6, c=7.
For an acute triangle, c² < a² + b².
a² + b² = 5² + 6² = 25 + 36 = 61
c² = 7² = 49
Answer:
This is an acute triangle, because c² < a² + b².
Measurement c.
a=8, b=9, c=12.
For an obtuse triangle, c² > a² + b².
a² + b² = 8² + 9² = 64 + 81 = 145
c² = 12² = 144
Answer:
This is an acute triangle because c² < a² + b².