Answer: 
Step-by-step explanation:
<h3>
The complete exercise is: " A circle has a radius of 6. An arc in this circle has a central angle of 330 degrees. What is the arc length?"</h3><h3>
</h3>
To solve this exercise you need to use the following formula to find the Arc lenght:

Where "C" is the central angle of the arc (in degrees) and "r" is the radius.
In this case, after analize the information given in the exercise, you can identify that the radius and the central angle in degrees, are:

Therefore, knowing these values, you can substitute them into the formula:

And finally,you must evaluate in order to find the Arc lenght.
You get that this is:

The rational root theorem states that the rational roots of a polynomial can only be in the form p/q, where p divides the constant term, and q divides the leading term.
In your case, both the leading term 5 and the constant term 11 are primes, so their only divisors are 1 and themselves.
So, the only feasible solutions are

For the record, in this case, none of the feasible solutions are actually a root of the polynomial.