Answer:
The length of the chord is 16 cm
Step-by-step explanation:
Mathematically, a line from the center of the circle to a chord divides the chord into 2 equal portions
From the first part of the question, we can get the radius of the circle
The radius form the hypotenuse, the two-portions of the chord (12/2 = 6 cm) and the distance from the center to the chord forms the other side of the triangle
Thus, by Pythagoras’ theorem; the square of the hypotenuse equals the sum of the squares of the two other sides
Thus,
r^2 = 8^2 + 6^2
r^2= 64 + 36
r^2 = 100
r = 10 cm
Now, we want to get a chord length which is 6 cm away from the circle center
let the half-portion that forms the right triangle be c
Using Pythagoras’ theorem;
10^2 = 6^2 + c^2
c^2 = 100-36
c^2 = 64
c = 8
The full
length of the chord is 2 * 8 = 16 cm
We cant get 2 fours in a single die.we need at least 2 die to get 2 fours.
Answer:
6/21.
Step-by-step explanation:
let the rational number be 2x/7x.
2x + 4 / 7x - 2 = 10 /19
Cross multiply:
19(2x + 4) = 10(7x - 2)
38x + 76 = 70x - 20
96 = 70x - 38x
32x = 96
x = 3.
So the rational number is 2*3/ 7*3
= 6/21.
Answer:
(a)123 km/hr
(b)39 degrees
Step-by-step explanation:
Plane X with an average speed of 50km/hr travels for 2 hours from P (Kano Airport) to point Q in the diagram.
Distance = Speed X Time
Therefore: PQ =50km/hr X 2 hr =100 km
It moves from Point Q at 9.00 am and arrives at the airstrip A by 11.30am.
Distance, QA=50km/hr X 2.5 hr =125 km
Using alternate angles in the diagram:

(a)First, we calculate the distance traveled, PA by plane Y.
Using Cosine rule

SInce aeroplane Y leaves kano airport at 10.00am and arrives at 11.30am
Time taken =1.5 hour
Therefore:
Average Speed of Y

(b)Flight Direction of Y
Using Law of Sines
![\dfrac{p}{\sin P} =\dfrac{q}{\sin Q}\\\dfrac{125}{\sin P} =\dfrac{184.87}{\sin 110}\\123 \times \sin P=125 \times \sin 110\\\sin P=(125 \times \sin 110) \div 184.87\\P=\arcsin [(125 \times \sin 110) \div 184.87]\\P=39^\circ $ (to the nearest degree)](https://tex.z-dn.net/?f=%5Cdfrac%7Bp%7D%7B%5Csin%20P%7D%20%3D%5Cdfrac%7Bq%7D%7B%5Csin%20Q%7D%5C%5C%5Cdfrac%7B125%7D%7B%5Csin%20P%7D%20%3D%5Cdfrac%7B184.87%7D%7B%5Csin%20110%7D%5C%5C123%20%5Ctimes%20%5Csin%20P%3D125%20%5Ctimes%20%5Csin%20110%5C%5C%5Csin%20P%3D%28125%20%5Ctimes%20%5Csin%20110%29%20%5Cdiv%20184.87%5C%5CP%3D%5Carcsin%20%5B%28125%20%5Ctimes%20%5Csin%20110%29%20%5Cdiv%20184.87%5D%5C%5CP%3D39%5E%5Ccirc%20%24%20%28to%20the%20nearest%20degree%29)
The direction of flight Y to the nearest degree is 39 degrees.
Answer:
51.2545454545
Step-by-step explanation: