<em>given,</em>
<em>measure of sides of the</em><em> </em><em>square = 12 cm</em>
<em>we know,</em><em> </em><em>diagonal</em>
<em>d = a√2</em>
<em>now,</em>
<em>d = 12√2</em>
<em>d </em><em>=</em><em> </em><em>1</em><em>6</em><em>.</em><em>9</em><em>7</em><em>0</em><em> </em>
<em>a/</em><em>q </em><em>we </em><em>have </em><em>to </em><em>round</em><em> </em><em>the </em><em>answer </em><em>to </em><em>the </em><em>nearest</em><em> </em><em>centimetres</em>
<em>so,</em><em> </em>
<em>it </em><em>is </em><em>1</em><em>7</em><em> </em><em>cm</em>
<em>hope </em><em>this</em><em> answer</em><em> helps</em><em> you</em><em> dear</em><em>!</em><em> </em><em>take </em><em>care!</em>
#12: 3053.6 in. Cubed
#14 24429.0 m. Cubed
#16 8.2 ft. Cubed
#18 0.5 cm. Cubed
Answer: Choice C) 2
----------------------------------------------
Explanation:
Using the law of sines, we get
sin(B)/b = sin(C)/c
sin(18)/7 = sin(C)/11
0.0441452849107 = sin(C)/11
11*0.0441452849107 = sin(C)
0.4855981340177 = sin(C)
sin(C) = 0.4855981340177
C = arcsin(0.4855981340177) or C = 180-arcsin(0.4855981340177)
C = 29.0516679549861 or C = 150.948332045013
There are two possibilities for angle C because of something like sin(30) = sin(150) = 1/2 = 0.5
Those approximate values of C round to
C = 29.05 and C = 150.95
If C = 29.05, then angle A is
A = 180-B-C
A = 180-18-29.05
A = 132.95
Making this triangle possible since angle A is a positive number
If C = 150.95, then angle A is
A = 180-B-C
A = 180-18-150.95
A = 11.05
making this triangle possible since angle A is a positive number
There are two distinct triangles that can be formed.
One triangle is with the angles: A = 132.95, B = 18, C = 29.05
The other triangle is with the angles: A = 11.05, B = 18, C = 150.95
The decimal values are approximate
Answer:
If looking for x then X= -7/3.
Step-by-step explanation:
You can set this up as an algebraic equation using the ratio:

=

where x = number of skiers
Cross multiply:
x + 1250 = 2x
Solve for x:
-x = -1250
x=1250
To find the number of snowboarders, add 1250.
1250 + 1250 = 2500
1250 skiers and 2500 snowboarders bought season passes.