Answer:
a. The estimate of mean fan rating for the population of NFL games=68.08
b. The estimate of standard deviation=18.8785
Step-by-step explanation:
Given
The fan ratings for a random sample of 12 games follow:
57, 61, 87,74,72,73,19,56,81,79,83 and 75
a.Mean =
Mean=
Mean= 68.08
b.

11.08 122.7664
7.08 50.1264
18.92 357.9664
5.92 35.0464
3.92 15.3664
4.92 72.6192
49.08 2408.8464
12.08 145.9264
12.92 166.9264
10.92 119.2464
14.92 734.064
6.92 47.8864
Standard deviation=
n=12

Standard deviation=
Standard deviation=
Standard deviation = 18.8785
The estimate of the standard deviation for the population of NFL games=18.8785