Answer:
6.13
Step-by-step explanation:
Using Sine Law we know that

Using your figure let's assign sides and angles:
A=? B = 60° C = 70°
a = 5 b = ? c = x
If we put that into our formula:

Notice that we have too many unknowns. We need to complete at least one ratio to do this, so how do we do this?
Notice we have 2 angles given, so we solve for the third angle. The sum of all angles in any triangle is always 180°
∠A + ∠B + ∠C= 180°
∠A + 60° + 70° = 180°
∠A + 130° = 180°
∠A = 180° - 130°
∠A = 50°
Now we can use this to solve for x.

So the closest answer would be 6.13
The area of a circle is A = πr^2. We let A1 And A2 the areas of the circles and r1 and r2 the radius of each, respectivley.
A1 + A2 = 80π
Substitute the formula for the area,
π(r1)^2 + π (r2)^2 = 80π
From the statement, we know that r2=2(r1).
<span>π(r1)^2 + π (2 x r1)^2 = 80π
</span>We can cancel π, we will have
5 x (r1)^2 = 80
Thus,
r1 = 4 and r2 = 8
The answer is C because it is at the first of four intervals between 0 and 1
Hi!
The combination of 4 digit numbers using those numbers are: 3, 276; 3, 762; 3, 267; 3, 726; 3, 672 etc. This is pretty easy, now you try.
Hope I helped! Have a nice day!
Answer:
p = 6/11.
Step-by-step explanation:
So we have a bag that contains 6 red marbles and 6 green marbles.
Then the total number of marbles that are in that bag is:
6 + 6 = 12
There are 12 marbles in the bag, and we assume that all marbles have the same probability of being randomly drawn.
Now we draw two marbles, we want to find the probability that one is red and the other is green.
The first marble that we draw does not matter, as we just want the second marble to be of the other color.
So, suppose we draw a green one in the first attempt.
Then in the second draw, we need to get a red one.
The probability of drawing a red one will be equal to the quotient between the red marbles in the bag (6) and the total number of marbles in the bag (12 - 1 = 11, because one green marble was drawn already)
Then the probability is:
p = 6/11.
Notice that would be the exact same case if the first marble was red.
Then we can conclude that the probability of getting two marbles of different colors is:
p = 6/11.