The simplest form is 11/24.
Answer:
Month 8
In this month Company B's plan will pay $64,000 versus $45,000 from Company A.
Step-by-step explanation:
Start by calculating the monthly payments for both plans.
Month - Company A - Company B
1 $10,000 $500
2 $15,000 $1,000
3 $20,000 $2,000
4 $25,000 $4,000
5 $30,000 $8,000
6 $35,000 $16,000
7 $40,000 $32,000
8 $45,000 $64,000
9 $50,000 $128,000
10 $55,000 $256,000
11 $60,000 $512,000
12 $65,000 $1,024,000
13 $70,000 $2,048,000
14 $75,000 $4,096,000
15 $80,000 $8,192,000
16 $85,000 $16,384,000
17 $90,000 $32,768,000
18 $95,000 $65,536,000
19 $100,000 $131,072,000
20 $105,000 $262,144,000
21 $110,000 $524,288,000
22 $115,000 $1,048,576,000
23 $120,000 $2,097,152,000
24 $125,000 $4,194,304,000
I believe you meant "why is the number of shifts multiplied by approximately 4.5 to obtain the total number of operators required to run the plant"
Answer and Explanation:
There are 3 shifts per day, 49 weeks per year and 5 shifts per operator per week
To get total number of operators required to run the plant, we multiply number of shifts in a year by number if operators per shift.
49 weeks×5 shifts= 245 shifts per operator per year
365×3 shifts= 1095 shifts per year
1095/245=4.5 operators per shift
total number of operators required to run the plant(per day) = 4.5×3= 13.5 approximately 14
total number of operators required to run the plant(per year) =4.5×1095=4927.5 approximately 4928
Answer:
C + 52 ≥ 78
Step-by-step explanation:
Since Sam needs at least 78 credits to a college degree, the inequality is represented by a more than or equal to symbol (≥).
Answer:
(X) 0 1 2 3 4
P(X) 0.17 0.23 0.27 0.24 0.09
F(x) 0.17 0.04 0.65 0.91 1
Step-by-step explanation:
Given that;
(X) 0 1 2 3 4
P(X) 0.17 0.23 0.27 0.24 0.09
cumulative distribution function can be calculated by; be cumulatively up the value of p(x) with the values before it;
so
x F(x)
0 P(X = 0) = 0.17
1 P(X = 0) + P(X = 1) = 0.17 + 0.23 = 0.4
2 P(X = 0) + P(X = 1) + P(X = 2) = 0.17 + 0.23 + 0.27 = 0.65
3 P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.17 + 0.23 + 0.27 + 0.24 = 0.91
4 P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.17 + 0.23 + 0.27 + 0.24 + 0.09 = 1
Therefore, cumulative distribution function f(x) is;
(X) 0 1 2 3 4
P(X) 0.17 0.23 0.27 0.24 0.09
F(x) 0.17 0.04 0.65 0.91 1