Answer:
It is a sigma bond
Explanation:
Chlorine has an electronic configuration of 1s2 2s2 2p6 3s2 3p5. This means that the outermost n=3 level has seven electrons. Hence one more electron is needed for the octet of outermost electrons to be achieved. As a result of this, chlorine enters into covalent bonding with another chlorine atom to form Cl2.
The outermost 3p electrons of the two chlorine atoms are now shared to form a p-p sigma bond (a single bond). Hence, the Cl2 molecule contains a sigma(single) bond between two chlorine atoms. Hence the answer written above.
Boyle’s Law illustrates the inverse relationship of volume and pressure. It follows the formula p1V1 = P2V2 , where P1V1 denotes initial pressure and volume and P2V2 denotes values of pressure and volume.
Now, let us work out for what is asked above.
a. if the pressure is doubled
50.0 p = V x 2p
V = 50.0 p / 2p
= 50.0 /2
= 25.0 m^3
b. if the pressure is cut in half
50.0 p = V x p/2
100 p = V x p
V = 100 m^3
c. if the pressure is tripled
50.0 p = V x 3p
V = 50.0 p / 3p
= 50.0 /3
=16.7 m^3
<span> </span>
Nomenclature and common formula. When part of a salt, the formula of the acetate ion is written as CH3CO2−, C2H3O2−, or CH3COO−. Chemists abbreviate acetate as OAc− or, less commonly, AcO−. Thus, HOAc is the abbreviation for acetic acid, NaOAc for sodium acetate, and EtOAc for ethyl acetate.
There are O-H bonds in H2O. They have the intramolecular force of polar covalent bond.
Answer:
58.92 g EDTA
Explanation:
315.1 mL = .3151 L
M = Moles / Liter
.3151 L x <u>0.5 mol EDTA</u> x <u>374 g EDTA</u> = 58.92 g EDTA
1 L EDTA 1 mol EDTA