CaCO₃ partially dissociates in water as Ca²⁺ and CO₃²⁻. The balanced equation is,
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
Initial Y - -
Change -X +X +X
Equilibrium Y-X X X
Ksp for the CaCO₃(s) is 3.36 x 10⁻⁹ M²
Ksp = [Ca²⁺(aq)][CO₃²⁻(aq)]
3.36 x 10⁻⁹ M² = X * X
3.36 x 10⁻⁹ M² = X²
X = 5.79 x 10⁻⁵ M
Hence the solubility of CaCO₃(s) = 5.79 x 10⁻⁵ M
= 5.79 x 10⁻⁵ mol/L
Molar mass of CaCO₃ = 100 g mol⁻¹
Hence the solubility of CaCO₃ = 5.79 x 10⁻⁵ mol/L x 100 g mol⁻¹
= 5.79 x 10⁻³ g/L
Pink and fluffy and squishy mangos
Answer:
Explanation:
the molecular mass of Na2C6H6O7 =236 g\mole it has a sodium that has 23 g/mole so 7.6 g of Na2C6H6O7 has x of sodium mass
236 g/mole ⇒ 23g/mole
<h2> 7.6 g ⇒ ˣ </h2>
7.6 x 23 ÷ 236 = 74.07×10-2 grams of sodium
<h2 />
Answer:
Al2(SO4)3 and Mg(OH)2
Explanation:
1. Al has a charge of 3-, and SO4 of 2-
when you cross multiply the charges you get
Al2 and (SO4)3
*the reason theres a bracket around the sulfate ion is that the charge 3 is not for oxygen only, but the entire sulphate ion*
Hence, Al2(SO4)3
2. Mg has a charge of 2- and OH of 1-
again cross multiply
Mg (you dont need to add the 1) and (OH)2
again, the bracket around OH means the charge appiles to Oxygen AND hydrogen
hence, Mg(OH)2
Answer: The equation is written below.
Explanation:

According to Stoichiometry of the reaction:
2 moles of phosphate ions reacts with 1 mole of aluminum sulfate to produce 2 moles of aluminum phosphate precipitate and 3 moles of sulfate ions.
Aluminum phosphate is an odorless and white crystalline solid
The chemical equation is written above.