Answer:
the length of the table is 108 inches
The 2nd option is the answer :)!
Answer:Just solve it. This is Algebra. Not that hard. Use Substation Method
Step-by-step explanation:
Answer:
![E(X)= n \int_{0}^1 x^n dx = n [\frac{1}{n+1}- \frac{0}{n+1}]=\frac{n}{n+1}](https://tex.z-dn.net/?f=E%28X%29%3D%20n%20%5Cint_%7B0%7D%5E1%20x%5En%20dx%20%3D%20n%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7D-%20%5Cfrac%7B0%7D%7Bn%2B1%7D%5D%3D%5Cfrac%7Bn%7D%7Bn%2B1%7D)
Step-by-step explanation:
A uniform distribution, "sometimes also known as a rectangular distribution, is a distribution that has constant probability".
We need to take in count that our random variable just take values between 0 and 1 since is uniform distribution (0,1). The maximum of the finite set of elements in (0,1) needs to be present in (0,1).
If we select a value
we want this:

And we can express this like that:
for each possible i
We assume that the random variable
are independent and
from the definition of an uniform random variable between 0 and 1. So we can find the cumulative distribution like this:

And then cumulative distribution would be expressed like this:



For each value
we can find the dendity function like this:

So then we have the pdf defined, and given by:
and 0 for other case
And now we can find the expected value for the random variable X like this:

![E(X)= n \int_{0}^1 x^n dx = n [\frac{1}{n+1}- \frac{0}{n+1}]=\frac{n}{n+1}](https://tex.z-dn.net/?f=E%28X%29%3D%20n%20%5Cint_%7B0%7D%5E1%20x%5En%20dx%20%3D%20n%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7D-%20%5Cfrac%7B0%7D%7Bn%2B1%7D%5D%3D%5Cfrac%7Bn%7D%7Bn%2B1%7D)
Answer:
2: 3, 4: 6, 6: 9, 8: 12 , 10: 15, 12: 18, 14: 21, 16: 24, 18: 27, 20: 30, 22: 33, 24:36, 26: 39, 28: 42, 30: 45, 32: 48, 34: 51, 36: 54, 38: 57
Step-by-step explanation:
The ratio 4: 6 can be simplified to 2:3 by dividing by 2 to each side of the ratio. After simplified to 2:3, you add the ration to itself to get the rest of the terms.