Answer:
5x + 2x.....combine like terms..... = 7x
5x + 2x....subbing in 1 7x - 1....subbing in 1
5(1) + 2(1) = 5 + 2 = 7 7(1) - 1 = 7 - 1 = 6
5x + 2x...subbing in 2 7x - 1...subbing in 2
5(2) + 2(2) = 10 + 4 = 14 7(2) - 1 = 14 - 1 = 13
5x + 2x...subbing in 3 7x - 1...subbing in 3
5(3) + 2(3) = 15 + 6 = 21 7(3) - 1 = 21 - 1 = 20
5x + 2x...subbing in 4 7x - 1....subbing in 4
5(4) + 2(4) = 20 + 8 = 28 7(4) - 1 = 28 - 1 = 27
5x + 2x...subbing in 5 7x - 1...subbing in 5
5(5) + 2(5) = 25 + 10 = 35 7(5) - 1 = 35 - 1 = 34
5x + 2x result values are 1 more then 7x - 1 result values
there are no values that will make the 2 expressions equal....
because 5x + 2x = 7x......and the other one is 7x - 1......so the 7x - 1 values will always be 1 number less...because ur subtracting one
Step-by-step explanation:
Answer:
njbvi3brfjkncdoewkmdrfrj
Step-by-step explanation:
gagagagagaggag
Answer:
Step-by-step explanation:
Hello!
So you have a new type of shoe that lasts presumably longer than the ones that are on the market. So your study variable is:
X: "Lifetime of one shoe pair of the new model"
Applying CLT:
X[bar]≈N(μ;σ²/n)
Known values:
n= 30 shoe pairs
x[bar]: 17 months
S= 5.5 months
Since you have to prove whether the new shoes last more or less than the old ones your statistical hypothesis are:
H₀:μ=15
H₁:μ≠15
The significance level for the test is given: α: 0.05
Your critical region will be two-tailed:


So you'll reject the null Hypothesis if your calculated value is ≤-1.96 or if it is ≥1.96
Now you calculate your observed Z-value
Z=<u>x[bar]-μ</u> ⇒ Z=<u> 17-15 </u> = 1.99
σ/√n 5.5/√30
Since this value is greater than the right critical value, i.e. Zobs(1.99)>1.96 you reject the null Hypothesis. So the average durability of the new shoe model is different than 15 months.
I hope you have a SUPER day!