Answer: The missing number in the sequence is 
Step-by-step explanation:
Since we have given that

First term = a= 
Common difference = d is given by

Therefore, it forms an arithmetic sequence.
Since,
is missing,
So,

Hence, the missing number in the sequence is 
To determine the thickness of the film, we assume the shape of the film is in a form of cylinder where the thickness is equal to the height. The volume of a cylinder is expressed as:
V = pi (r^2) h
We calculate as follows:
0.23 = pi (10^2) (h)
h = 0.0007 cm
Answer:
Attachment 1 :- x = 3/2
Attachment 2 :- m + r = 154°
Step-by-step explanation:
Attachment 1 :-

As the base 3 is same on both the sides , cancel the base 3 from both left & right side of eqn. After that we will get:-

Attachment 2 :-
PQR is a straight line . It's given that m + n = 110°
But we know that m + n + r = 180° ..............eqn.1
So substituting the value of m+n in eqn.1 gives :-
m+n+r = 180°
=> r + 110° = 180°
=> r = 180° - 110°
= 70°
It's also given that n+r = 96°
So putting the value of r in the above gives ,
n+r = 96°
=> n + 70° =96°
=> n = 96° - 70°
= 26°
Putting the value of n in eqn.1 gives
m + n = 110°
=> m + 26° = 110°
=> m = 110° - 26°
= 84°
So m + r = 84° + 70° = 154°
Let x be the number
2x - 7 + 5x
=7x-7
Check the picture below.
![~\hfill \stackrel{\textit{\large distance between 2 points}}{d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ A(\stackrel{x_1}{1}~,~\stackrel{y_1}{-9})\qquad B(\stackrel{x_2}{8}~,~\stackrel{y_2}{0}) ~\hfill AB=\sqrt{[ 8- 1]^2 + [ 0- (-9)]^2} \\\\\\ AB=\sqrt{7^2+(0+9)^2}\implies AB=\sqrt{7^2+9^2}\implies \boxed{AB=\sqrt{130}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~%5Chfill%20%5Cstackrel%7B%5Ctextit%7B%5Clarge%20distance%20between%202%20points%7D%7D%7Bd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%7D~%5Chfill~%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B-9%7D%29%5Cqquad%20B%28%5Cstackrel%7Bx_2%7D%7B8%7D~%2C~%5Cstackrel%7By_2%7D%7B0%7D%29%20~%5Chfill%20AB%3D%5Csqrt%7B%5B%208-%201%5D%5E2%20%2B%20%5B%200-%20%28-9%29%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AB%3D%5Csqrt%7B7%5E2%2B%280%2B9%29%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B7%5E2%2B9%5E2%7D%5Cimplies%20%5Cboxed%7BAB%3D%5Csqrt%7B130%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![B(\stackrel{x_1}{8}~,~\stackrel{y_1}{0})\qquad C(\stackrel{x_2}{9}~,~\stackrel{y_2}{-8}) ~\hfill BC=\sqrt{[ 9- 8]^2 + [ -8- 0]^2} \\\\\\ BC=\sqrt{1^2+(-8)^2}\implies \boxed{BC=\sqrt{65}}](https://tex.z-dn.net/?f=B%28%5Cstackrel%7Bx_1%7D%7B8%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20C%28%5Cstackrel%7Bx_2%7D%7B9%7D~%2C~%5Cstackrel%7By_2%7D%7B-8%7D%29%20~%5Chfill%20BC%3D%5Csqrt%7B%5B%209-%208%5D%5E2%20%2B%20%5B%20-8-%200%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20BC%3D%5Csqrt%7B1%5E2%2B%28-8%29%5E2%7D%5Cimplies%20%5Cboxed%7BBC%3D%5Csqrt%7B65%7D%7D)
now, we could check for the CA distance, however, we already know that AB ≠ BC, so there's no need.