Answer:


Step-by-step explanation:
we are given


we have to find f/g
we can write as

now, we can plug values
and we get

so,

we know that denominator can not be zero
so,

now, we can solve for x


Divide both sides by 5
and we get

Answer:
76.85
Step-by-step explanation:
too many steps and i'm not good
at explaining
Answer:
Probability that a sample mean is 12 or larger for a sample from the horse population is 0.0262.
Step-by-step explanation:
We are given that a veterinary researcher takes a random sample of 60 horses presenting with colic. The average age of the random sample of horses with colic is 12 years. The average age of all horses seen at the veterinary clinic was determined to be 10 years. The researcher also determined that the standard deviation of all horses coming to the veterinary clinic is 8 years.
So, firstly according to Central limit theorem the z score probability distribution for sample means is given by;
Z =
~ N(0,1)
where,
= average age of the random sample of horses with colic = 12 yrs
= average age of all horses seen at the veterinary clinic = 10 yrs
= standard deviation of all horses coming to the veterinary clinic = 8 yrs
n = sample of horses = 60
So, probability that a sample mean is 12 or larger for a sample from the horse population is given by = P(
12)
P(
12) = P(
) = P(Z
1.94) = 1 - P(Z < 1.94)
= 1 - 0.97381 = 0.0262
Therefore, probability that a sample mean is 12 or larger for a sample from the horse population is 0.0262.
Answer:
A. b(w) = 80w +30
B. input: weeks; output: flowers that bloomed
C. 2830
Step-by-step explanation:
<h3>Part A:</h3>
For f(s) = 2s +30, and s(w) = 40w, the composite function f(s(w)) is ...
b(w) = f(s(w)) = 2(40w) +30
b(w) = 80w +30 . . . . . . blooms over w weeks
__
<h3>Part B:</h3>
The input units of f(s) are <em>seeds</em>. The output units are <em>flowers</em>.
The input units of s(w) are <em>weeks</em>. The output units are <em>seeds</em>.
Then the function b(w) above has input units of <em>weeks</em>, and output units of <em>flowers</em> (blooms).
__
<h3>Part C:</h3>
For 35 weeks, the number of flowers that bloomed is ...
b(35) = 80(35) +30 = 2830 . . . . flowers bloomed over 35 weeks