The Factorization of 121b⁴ − 49 is (11b^2 + 7)(11b^2 - 7).
The equation 121b⁴ − 49
To find the Factorization of 121b⁴ − 49.
<h3>
What is the factor of a^2-b^2?</h3>
The factor of a^2-b^2 is (a+b)(a-b)
We have write the given equation in the form of a^2-b^2

Therefore the factor of the 121b^4 − 49 is (11b^2 + 7)(11b^2 - 7).
To learn more about the factor visit:
brainly.com/question/25829061
Solution:
We are given below frequency table:
Amusement-Park Museum Broadway-Show Total
Juniors 57 21 42 120
Seniors 64 44 58 166
Total 121 65 100 286
We have to find the percentage of surveyed students who chose the amusement park.
From the table, we see there are total 121 students who chose amusement park out of total 286 students.
Therefore, the percentage of surveyed students who chose the amusement park is given below:

Hence, the option A. 42.30% correct.
Answer:
Original equation: C-21=16
Add 21 to both sides: C=37
Hope this helps!
Answer:
<h2>2/5</h2>
Step-by-step explanation:
The question is not correctly outlined, here is the correct question
<em>"Suppose that a certain college class contains 35 students. of these, 17 are juniors, 20 are mathematics majors, and 12 are neither. a student is selected at random from the class. (a) what is the probability that the student is both a junior and a mathematics majors?"</em>
Given data
Total students in class= 35 students
Suppose M is the set of juniors and N is the set of mathematics majors. There are 35 students in all, but 12 of them don't belong to either set, so
|M ∪ N|= 35-12= 23
|M∩N|= |M|+N- |MUN|= 17+20-23
=37-23=14
So the probability that a random student is both a junior and social science major is
=P(M∩N)= 14/35
=2/5
2/3 to 1 is correct. Can i be brainliest! It will help alot!