the answer is 3000 pounds.
Step-by-step explanation:
1 ton is 2000 pounds so you just have to multiply 1500×2.
Answer:
The transformation on the graph is a reflection across the x-axis.
Step-by-step explanation:
A reflection is a transformation representing a flip of a figure. Figures may be reflected in a point, a line, or a plane. When reflecting a figure in a line or in a point, the image is congruent to the preimage. A reflection maps every point of a figure to an image across a fixed line.
In this particular figure, you see that each point is the same number of units away from the x-axis. For instance, with A and A' their both 1 unit away from the x-axis. So this is an automatic indicator that this transformation is a reflection.
The graphed polynomial seems to have a degree of 2, so the degree can be 4 and not 5.
<h3>
Could the graphed function have a degree 4?</h3>
For a polynomial of degree N, we have (N - 1) changes of curvature.
This means that a quadratic function (degree 2) has only one change (like in the graph).
Then for a cubic function (degree 3) there are two, and so on.
So. a polynomial of degree 4 should have 3 changes. Naturally, if the coefficients of the powers 4 and 3 are really small, the function will behave like a quadratic for smaller values of x, but for larger values of x the terms of higher power will affect more, while here we only see that as x grows, the arms of the graph only go upwards (we don't know what happens after).
Then we can write:
y = a*x^4 + c*x^2 + d
That is a polynomial of degree 4, but if we choose x^2 = u
y = a*u^2 + c*u + d
So it is equivalent to a quadratic polynomial.
Then the graph can represent a function of degree 4 (but not 5, as we can't perform the same trick with an odd power).
If you want to learn more about polynomials:
brainly.com/question/4142886
#SPJ1
Answer:
<h2> <em><u>720</u></em><em><u>0</u></em></h2>
Step-by-step explanation:
<h3>
At first:</h3>
<em><u>G</u></em><em><u>i</u></em><em><u>v</u></em><em><u>e</u></em><em><u>n</u></em><em><u>,</u></em>
Back of lot of the trapezoid = 175
Front of lot of the trapezoid = 185
Length of lot of the trapezoid = 100
<em><u>Therefore</u></em><em><u>,</u></em><em><u> </u></em>
Area of the trapezoid

- <em>[</em><em>On</em><em> </em><em>putting</em><em> </em><em>the</em><em> </em><em>values</em><em>]</em>

- <em>[</em><em>On</em><em> </em><em>Simplification</em><em>]</em>
= 360 × 50
- <em>[</em><em>On multiplying</em><em>]</em>
= 18000
<em><u>Hence</u></em><em><u>,</u></em>
We got the <em>T</em><em>otal Area </em><em>as</em><em> </em><em>180</em><em>0</em><em>0</em><em>.</em>
<h3>Now:</h3>
<em><u>As</u></em><em><u> </u></em><em><u>per</u></em><em><u> </u></em><em><u>given</u></em><em><u> </u></em><em><u>equation</u></em><em><u>,</u></em>

- To find the value of x
<em><u>Solution</u></em><em><u> </u></em><em><u>,</u></em>

- <em>[</em><em>On</em><em> </em><em>putting</em><em> </em><em>Total</em><em> </em><em>Area</em><em> </em><em>=</em><em> </em><em>180</em><em>0</em><em>0</em><em>]</em>

- <em>[</em><em>On</em><em> </em><em>cross</em><em> </em><em>multiplication</em><em>]</em>
=> 40 × 18000 = 100 × x
- <em>[</em><em>O</em><em>n</em><em> </em><em>Simplification</em><em> </em><em>]</em>
=> 720000 = 100x
- <em>[</em><em>On</em><em> </em><em>dividing</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>with</em><em> </em><em>100</em><em>]</em>

- <em>[</em><em>On</em><em> </em><em>Simplification</em><em> </em><em>]</em>
=> x = 7200
<em><u>Hence</u></em><em><u>,</u></em>
<em><u>Xavier's</u></em><em><u> </u></em><em><u>avaliable</u></em><em><u> </u></em><em><u>lot</u></em><em><u> </u></em><em><u>coverage</u></em><em><u> </u></em><em><u>(</u></em><em><u>x</u></em><em><u>)</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>720</u></em><em><u>0</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>
Answer:
The value of 3 is in the tenths place.
Step-by-step explanation:
Given : Number 12.345.
To find : In the number 12.345, the 3 is in the what place ?
Solution :
According to place value system,
Tens Ones Tenths Hundredths Thousandths
1 2 3 4 5
The value are 
Therefore, The value of 3 is in the tenths place.