A term is a number or variable in a math sentence (such as an expression or equation).
Example:
a + 2b + c + 5
5 is a constant; a,b, c are all variables.
Answer:
y-3
Problem:
What is the remainder when the dividend is xy-3, the divisor is y, and the quotient is x-1. ?
Step-by-step explanation:
Dividend=quotient×divisor+remainder
So we have
xy-3=(x-1)×(y)+remainder
xy-3=(xy-y)+remainder *distributive property
Now we just need to figure out what polynomial goes in for the remainder so this will be a true identity.
We need to get rid of minus y so we need plus y in the remainder.
We also need minus 3 in the remainder.
So the remainder is y-3.
Let's try it out:
xy-3=(xy-y)+remainder
xy-3=(xy-y)+(y-3)
xy-3=xy-3 is what we wanted so we are done here.
Answer:
(b)0.56
(c)0.38
Step-by-step explanation:
(a)
P(Ben Pass) =0.8
Therefore: P(Ben fails)=1-0.8 =0.2
P(Tom Pass) =0.7
Therefore: P(Tom fails)=1-0.7 =0.3
See attached for the completed tree diagram
(b)Probability that both will pass
P(both will pass)=P(Ben pass and Tom pass)
=P(Ben pass) X P(Tom pass)
=0.8 X 0.7
=0.56
(c)The probability that only one of them will pass
Since either Tom or Ben can pass, we have:
P(only one of them will pass)
=P(Ben pass and Tom fails OR Ben Fails and Tom Pass)
=P(Ben pass and Tom fails)+P(Ben Fails and Tom Pass)
=(0.8 X 0.3) + (0.2 X 0.7)
=0.24 + 0.14
=0.38
Answer with Step-by-step explanation:
Let F be a field .Suppose
and 
We have to prove that a has unique multiplicative inverse.
Suppose a has two inverses b and c
Then,
where 1 =Multiplicative identity

(cancel a on both sides)
Hence, a has unique multiplicative inverse.