Answer;
-Physical model
A physical representation of a real object, such as a globe of the world, is a physical model.
Explanation;
-A physical model is a simplified material representation, usually on a reduced scale, of an object or phenomenon that needs to investigated.
-The model can be used to simulate the physical conditions involved (temperature, waves, speed etc.) and to predict the particular constraints of the situation.
Answer:
Explanation:
Given that,
Radius of solenoid R = 4cm = 0.04m
Turn per length is N/l = 800 turns/m
The rate at which current is increasing di/dt = 3 A/s
Induced electric field?
At r = 2.2cm=0.022m
µo = 4π × 10^-7 Wb/A•m
The magnetic field inside a solenoid is give as
B = µo•N•I
The value of electric field (E) can
only be a function of the distance r from the solenoid’s axis and it give as,
From gauss law
∮E•dA =qenc/εo
We can find the tangential component of the electric field from Faraday’s law
∮E•dl = −dΦB/dt
We choose the path to be a circle of radius r centered on the cylinder axis. Because all the requested radii are inside the solenoid, the flux-area is the entire πr² area within the loop.
E∮dl = −d/dt •(πr²B)
2πrE = −πr²dB/dt
2πrE = −πr² d/dt(µo•N•I)
2πrE = −πr² × µo•N•dI/dt
Divide both sides by 2πr
E =- ½ r•µo•N•dI/dt
Now, substituting the given data
E = -½ × 0.022 × 4π ×10^-7 × 800 × 3
E = —3.32 × 10^-5 V/m
E = —33.2 µV/m
The magnitude of the electric field at a point 2.2 cm from the solenoid axis is 33.2 µV/m
where the negative sign denotes counter-clockwise electric field when looking along the direction of the solenoid’s magnetic field.
To solve this problem it is necessary to apply the relationship given by the intrinsic carrier concentration, in each of the phases.
The intrinsic carrier concentration is the number of electrons in the conduction band or the number of holes in the valence band in intrinsic material. This number of carriers depends on the band gap of the material and on the temperature of the material.
In general, this can be written mathematically as

Both are identical semiconductor but the difference is band gap which is:




The ratio between the two phases are given as:





Therefore the ratio of intrinsic carrier densities for the two materials at room temperature is 0.145
The range of a projectile motion is given by:

where,
is the initial speed of the projectile,
is the angle of the projectile and
is the acceleration due to gravity.
The maximum height reached is given by:

Part a
It is given that the maximum height reached is equal to the horizontal range. we need to find the angle of the projectile.
Equating the two:

Hence, the projectile was thrown at an initial angle of
.
Part b
we need to find the angle for which range would be maximum and then write this maximum range in terms of original range.
So, we know that range is given by:

It would be maximum when 
Hence, 
Original range,

Part c:
In the part a, we know that the angle of the projectile is independent of the
i.e. the acceleration due to gravity and this is the only factor that varies with the different planets. Hence, the answer would remain same.