(a) The maximum potential difference across the resistor is 339.41 V.
(b) The maximum current through the resistor is 0.23 A.
(c) The rms current through the resistor is 0.16 A.
(d) The average power dissipated by the resistor is 38.4 W.
<h3>Maximum potential difference</h3>
Vrms = 0.7071V₀
where;
V₀ = Vrms/0.7071
V₀ = 240/0.7071
V₀ = 339.41 V
<h3> rms current through the resistor </h3>
I(rms) = V(rms)/R
I(rms) = (240)/(1,540)
I(rms) = 0.16 A
<h3>maximum current through the resistor </h3>
I₀ = I(rms)/0.7071
I₀ = (0.16)/0.7071
I₀ = 0.23 A
<h3> Average power dissipated by the resistor</h3>
P = I(rms) x V(rms)
P = 0.16 x 240
P = 38.4 W
Learn more about maximum current here: brainly.com/question/14562756
#SPJ1
Answer:
t = 300.3 seconds
Explanation:
Given that,
The mass of a freight train, 
Force applied on the tracks, 
Initial speed, u = 0
Final speed, v = 80 km/h = 22.3 m/s
We need to find the time taken by it to increase the speed of the train from rest.
The force acting on it is given by :
F = ma
or

So, the required time is 300.3 seconds.
Answer:
13.18 m/s
Explanation:
Let the velocity of sports utility car is
-u as it is moving in opposite direction.
mc = 1200 kg, uc = 31.1 m/s
ms = 2830 kg, us = - u = ?
Using conservation of momentum
mc × uc + ms × us = 0
1200 × 31.1 - 2830 × u = 0
u = 13.18 m/s
Answer:
The gravity on this planet is stronger than that of earth.
Explanation:
First we need to find the acceleration due to gravity value of this planet to compare its gravity force with that of the earth. Hence, we will use second equation of motion:
h = Vi t + (0.5)gt²
where,
h = height or depth of crater = 100 m
Vi = Initial Velocity of rock = 0 m/s
t = time = 4 s
g = acceleration due to gravity on this planet = ?
Therefore,
100 m = (0 m/s)(4 s) + (0.5)(g)(4 s)²
g = (200 m)/(16 s²)
g = 12.5 m/s²
on earth:
ge = 9.8 m/s²
Since,
ge < g
Therefore,
<u>The gravity on this planet is stronger than that of earth.</u>
the answer is c) the speed and direction of travel must be constant