Sorry, I can't really see the question )-:
Answer:
Reagent A = 
Reagent B= 
Intermediate C= δ-Valerolactone
Explanation:
In the reaction from the alkene to the alcohol, we can use the <u>alkene hydration</u> in which the hydronium ion is added to the double bond followed by the attack of water to produce the <u>alcohol</u>.
Then in the conversion from alcohol to ketone can be produced if an <u>oxidant reactive</u><u> </u>is used. In this case the <u>Jones reagent </u>(
).
The intermediate is a structure produced by a <u>peroxyacid</u>. This reaction would introduce an <u>ester group </u>in the cycle generating the δ-Valerolactone (Figure 1).
The answer is B. the occurrence of huge events in Earth's natural history
The geologic time scale is a system of chronological dating that relates geological strata to time. It is used by geologists, paleontologists, and other Earth scientists to describe the timing and relationships of events that have occurred during Earth's history.
Answer:
A sample of pure NO2 is heated to 338 ∘C at which temperature it partially dissociates according to the equation 2NO2(g)⇌2NO(g)+O2(g) At equilibrium the density of the gas mixture is 0.515 g/L at 0.745 atm .
(4x^2)x
Kc= -----------
(A-2x)^2
PV=nRT
n/v = P/RT = .745/(0.0821)(334+273) = .01495
To Find the initial molarity of NO2
(mol/L)(g/mol) + (mol/L)(g/mol) + (mol/L)(g/mol)= g/L
Thus:
46(A-2x) + 2x(30) + 32x = .515 g/L
46A-92x+60x+32x = .515
46A=.515
A=.01120 M
Using the total molarity found
(A-2x)+2x+x = .01495 M
A+x=.01495
Plug in A found into the above equation:
.01120+x = .01495
x=.00375
Now Plug A and x into the original Equilibrium Constant Expression:
(4x^2)x
Kc= -----------
(A-2x)^2
Kc = 0.000014
Explanation: