D=rt and we are told d=546 and r=1.3m/s so
1.3t=546 divide both sides by 1.3
t=420 seconds so
420s(min/60s)=7 min
So it takes him 7 minutes to walk to Sara's house.
<span>binomial </span>is an algebraic expression containing 2 terms. For example, (x + y) is a binomial.
We sometimes need to expand binomials as follows:
(a + b)0 = 1
(a + b)1 = a + b
(a + b)2 = a2 + 2ab + b2
(a + b)3 = a3 + 3a2b + 3ab2 + b3
<span>(a + b)4</span> <span>= a4 + 4a3b</span><span> + 6a2b2 + 4ab3 + b4</span>
<span>(a + b)5</span> <span>= a5 + 5a4b</span> <span>+ 10a3b2</span><span> + 10a2b3 + 5ab4 + b5</span>
Clearly, doing this by direct multiplication gets quite tedious and can be rather difficult for larger powers or more complicated expressions.
Pascal's Triangle
We note that the coefficients (the numbers in front of each term) follow a pattern. [This was noticed long before Pascal, by the Chinese.]
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
You can use this pattern to form the coefficients, rather than multiply everything out as we did above.
The Binomial Theorem
We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
<span>Properties of the Binomial Expansion <span>(a + b)n</span></span><span><span>There are <span>\displaystyle{n}+{1}<span>n+1</span></span> terms.</span><span>The first term is <span>an</span> and the final term is <span>bn</span>.</span></span><span>Progressing from the first term to the last, the exponent of a decreases by <span>\displaystyle{1}1</span> from term to term while the exponent of b increases by <span>\displaystyle{1}1</span>. In addition, the sum of the exponents of a and b in each term is n.</span><span>If the coefficient of each term is multiplied by the exponent of a in that term, and the product is divided by the number of that term, we obtain the coefficient of the next term.</span>
we have

we know that
<u>The Rational Root Theorem</u> states that when a root 'x' is written as a fraction in lowest terms

p is an integer factor of the constant term, and q is an integer factor of the coefficient of the first monomial.
So
in this problem
the constant term is equal to 
and the first monomial is equal to
-----> coefficient is 
So
possible values of p are 
possible values of q are 
therefore
<u>the answer is</u>
The all potential rational roots of f(x) are
(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
Answer:
Equation: y=2/3x-4
y intercept is (0,-4)
x intercept is (6, 0)
Step-by-step explanation:
N = 4 + x? i think, im not really sure but im pretty sure it is