1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
4 years ago
11

What is the solution to the exponential equation

Mathematics
1 answer:
Ivan4 years ago
3 0

Answer:

D.x = 5

Step-by-step explanation:

5-1 = 4, and 3 to the power of 4 is 81

You might be interested in
Suppose the line of best fit for some data points has a slope of 4.915. If the mean of the x-coordinates of the data points is 1
aleksley [76]

The y-intercept of the linear equation of best fit, considering the slope and the means, is of -60.428.

<h3>What is a linear function?</h3>

A linear function is modeled by:

y = mx + b

In which:

  • m is the slope, which is the rate of change, that is, by how much y changes when x changes by 1.
  • b is the y-intercept, which is the value of y when x = 0, and can also be interpreted as the initial value of the function.

For a line of best-fit, the y-intercept is given by:

b = \overline{y} - m\overline{x}

The parameters in this problem are given as follows:

m = 4.915, \overline{x} = 14.347, \overline{y} = 10.088

Then:

b = 10.088 - 4.915(14.347) = -60.428

More can be learned about linear functions at brainly.com/question/24808124

#SPJ1

5 0
2 years ago
PLS PLS PLS HELP IM STUCK AND I KEEP GETTING IT WRONG
Reil [10]

Answer:  burh

hey i know the answer but

Step-by-step explanation:

3 0
3 years ago
Suppose that the number of drivers who travel between a particular origin and destination during a designated time period has a
kipiarov [429]

Answer:

a) P(k≤11) = 0.021

b) P(k>23) = 0.213

c) P(11≤k≤23) = 0.777

P(11<k<23) = 0.699

d) P(15<k<25)=0.687

Step-by-step explanation:

a) What is the probability that the number of drivers will be at most 11?

We have to calculate P(k≤11)

P(k\leq11)=\sum_0^{11} P(k

P(k=0) = 20^0e^{-20}/0!=1 \cdot 0.00000000206/1=0\\\\P(k=1) = 20^1e^{-20}/1!=20 \cdot 0.00000000206/1=0\\\\P(k=2) = 20^2e^{-20}/2!=400 \cdot 0.00000000206/2=0\\\\P(k=3) = 20^3e^{-20}/3!=8000 \cdot 0.00000000206/6=0\\\\P(k=4) = 20^4e^{-20}/4!=160000 \cdot 0.00000000206/24=0\\\\P(k=5) = 20^5e^{-20}/5!=3200000 \cdot 0.00000000206/120=0\\\\P(k=6) = 20^6e^{-20}/6!=64000000 \cdot 0.00000000206/720=0\\\\P(k=7) = 20^7e^{-20}/7!=1280000000 \cdot 0.00000000206/5040=0.001\\\\

P(k=8) = 20^8e^{-20}/8!=25600000000 \cdot 0.00000000206/40320=0.001\\\\P(k=9) = 20^9e^{-20}/9!=512000000000 \cdot 0.00000000206/362880=0.003\\\\P(k=10) = 20^{10}e^{-20}/10!=10240000000000 \cdot 0.00000000206/3628800=0.006\\\\P(k=11) = 20^{11}e^{-20}/11!=204800000000000 \cdot 0.00000000206/39916800=0.011\\\\

P(k\leq11)=\sum_0^{11} P(k

b) What is the probability that the number of drivers will exceed 23?

We can write this as:

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))

P(k=12) = 20^{12}e^{-20}/12!=8442485.238/479001600=0.018\\\\P(k=13) = 20^{13}e^{-20}/13!=168849704.75/6227020800=0.027\\\\P(k=14) = 20^{14}e^{-20}/14!=3376994095.003/87178291200=0.039\\\\P(k=15) = 20^{15}e^{-20}/15!=67539881900.067/1307674368000=0.052\\\\P(k=16) = 20^{16}e^{-20}/16!=1350797638001.33/20922789888000=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=27015952760026.7/355687428096000=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=540319055200533/6402373705728000=0.084\\\\

P(k=19) = 20^{19}e^{-20}/19!=10806381104010700/121645100408832000=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=216127622080213000/2432902008176640000=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=4322552441604270000/51090942171709400000=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=86451048832085300000/1.12400072777761E+21=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=1.72902097664171E+21/2.5852016738885E+22=0.067\\\\

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))\\\\P(k>23)=1-(0.021+0.766)=1-0.787=0.213

c) What is the probability that the number of drivers will be between 11 and 23, inclusive? What is the probability that the number of drivers will be strictly between 11 and 23?

Between 11 and 23 inclusive:

P(11\leq k\leq23)=P(x\leq23)-P(k\leq11)+P(k=11)\\\\P(11\leq k\leq23)=0.787-0.021+ 0.011=0.777

Between 11 and 23 exclusive:

P(11< k

d) What is the probability that the number of drivers will be within 2 standard deviations of the mean value?

The standard deviation is

\mu=\lambda =20\\\\\sigma=\sqrt{\lambda}=\sqrt{20}= 4.47

Then, we have to calculate the probability of between 15 and 25 drivers approximately.

P(15

P(k=16) = 20^{16}e^{-20}/16!=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=0.084\\\\P(k=19) = 20^{19}e^{-20}/19!=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=0.067\\\\P(k=24) = 20^{24}e^{-20}/24!=0.056\\\\

3 0
3 years ago
Seventy percent of all vehicles examined at a certain emissions inspection station pass the inspection. Assuming that successive
LenaWriter [7]

Answer:

(a) The probability that all the next three vehicles inspected pass the inspection is 0.343.

(b) The probability that at least 1 of the next three vehicles inspected fail is 0.657.

(c) The probability that exactly 1 of the next three vehicles passes is 0.189.

(d) The probability that at most 1 of the next three vehicles passes is 0.216.

(e) The probability that all 3 vehicle passes given that at least 1 vehicle passes is 0.3525.

Step-by-step explanation:

Let <em>X</em> = number of vehicles that pass the inspection.

The probability of the random variable <em>X</em> is <em>P (X) = 0.70</em>.

(a)

Compute the probability that all the next three vehicles inspected pass the inspection as follows:

P (All 3 vehicles pass) = [P (X)]³

                                    =(0.70)^{3}\\=0.343

Thus, the probability that all the next three vehicles inspected pass the inspection is 0.343.

(b)

Compute the probability that at least 1 of the next three vehicles inspected fail as follows:

P (At least 1 of 3 fails) = 1 - P (All 3 vehicles pass)

                                   =1-0.343\\=0.657

Thus, the probability that at least 1 of the next three vehicles inspected fail is 0.657.

(c)

Compute the probability that exactly 1 of the next three vehicles passes as follows:

P (Exactly one) = P (1st vehicle or 2nd vehicle or 3 vehicle)

                         = P (Only 1st vehicle passes) + P (Only 2nd vehicle passes)

                              + P (Only 3rd vehicle passes)

                       =(0.70\times0.30\times0.30) + (0.30\times0.70\times0.30)+(0.30\times0.30\times0.70)\\=0.189

Thus, the probability that exactly 1 of the next three vehicles passes is 0.189.

(d)

Compute the probability that at most 1 of the next three vehicles passes as follows:

P (At most 1 vehicle passes) = P (Exactly 1 vehicles passes)

                                                       + P (0 vehicles passes)

                                              =0.189+(0.30\times0.30\times0.30)\\=0.216

Thus, the probability that at most 1 of the next three vehicles passes is 0.216.

(e)

Let <em>X</em> = all 3 vehicle passes and <em>Y</em> = at least 1 vehicle passes.

Compute the conditional probability that all 3 vehicle passes given that at least 1 vehicle passes as follows:

P(X|Y)=\frac{P(X\cap Y)}{P(Y)} =\frac{P(X)}{P(Y)} =\frac{(0.70)^{3}}{[1-(0.30)^{3}]} =0.3525

Thus, the probability that all 3 vehicle passes given that at least 1 vehicle passes is 0.3525.

7 0
3 years ago
The diagonals of a quadrilaretral intersect at (-1,4). One of the sides of the quadrilateral is bounded by (2,7) and (-3,5)
Maurinko [17]

Solution:

Properties of Square

1. All sides are equal.

2. Opposite sides are parallel.

3. Diagonals are equal and bisect each other at right angles.

As, given point of intersection of diagonals of square is (-1,4).

And, One of the sides of the quadrilateral is bounded by (2,7) and (-3,5).  

Drawn the picture of square below,

Let, the third and fourth vertices of square be (x,y) and (p,q).

As, diagonals of square bisect each other. So,

\frac{x+2}{2}=-1\\\\ x +2=-2\\\\ x=-2-2\\\\ x=-4\\\\ \frac{y+7}{2}=4\\\\ y+7=8\\\\ y=8-7\\\\ y=1\\\\ \frac{p-3}{2}=-1\\\\ p-3=-2\\\\ p=3-2\\\\ p=1 \\\\ \frac{q+5}{2}=4\\\\ q+5=8\\\\ q=8-5\\\\ q=3

So, third and fourth vertices are (-4,1) and (1,3).

5 0
3 years ago
Other questions:
  • Please need help on this
    7·1 answer
  • Solve the inequality. 4x + 1 &lt; 8x - 3 &lt; 4x + 5
    11·1 answer
  • Plz help with this, u don't need to answer all of the questions!
    6·1 answer
  • 3. Write out the prime factor of the following numbers.<br> a. 15<br> b. 21<br> C. 38<br> d. 42
    6·1 answer
  • What is the answer to 99, please explain
    15·1 answer
  • Kjkhjgfkjtdytblulvuyfhtrsdykukhlkh gukyf
    9·1 answer
  • What is the solution to the system of equations? Use any method. {3x+y=32x+y=7 {2x+y=7
    8·2 answers
  • Elaine wants to buy a couch for $899.99 if she pays $69.75 in sales tax what is the sales tax percent explain steps
    11·1 answer
  • Question 2<br> If f(x) = x + 3x - 5. find the value of f(3).<br> T
    12·2 answers
  • This is due in 10 min ugh
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!