If the third term of the aritmetic sequence is 126 and sixty fourth term is 3725 then the first term is 8.
Given the third term of the aritmetic sequence is 126 and sixty fourth term is 3725.
We are required to find the first term of the arithmetic sequence.
Arithmetic sequence is a series in which all the terms have equal difference.
Nth term of an AP=a+(n-1)d
=a+(3-1)d
126=a+2d--------1
=a+(64-1)d
3725=a+63d------2
Subtract second equation from first equation.
a+2d-a-63d=126-3725
-61d=-3599
d=59
Put the value of d in 1 to get the value of a.
a+2d=126
a+2*59=126
a+118=126
a=126-118
a=8
=a+(1-1)d
=8+0*59
=8
Hence if the third term of the arithmetic sequence is 126 and sixty fourth term is 3725 then the first term is 8.
Learn more about arithmetic progression at brainly.com/question/6561461
#SPJ1
Answer:
Step-by-step explanation:
144-:-8= 18 Distributive Property to answer
The given expression is

THe given expression is a rational expression, and rational expression should not have 0 in the denominator.
Moreover, the denominator is a square root term, and square root don't have a value for negative number .
Therefore 2x+10 must be greater then 0. That is

Therefore the required domain in set builder form is
{
}