1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
3 years ago
9

Can you please help formate this problem

Mathematics
1 answer:
vovangra [49]3 years ago
5 0
Take another picture

You might be interested in
What can be broken, but is never held?
nlexa [21]
I think it’s a promise. Because you can break it without holding something physical.
4 0
3 years ago
Read 2 more answers
I need help with this math problem!
notka56 [123]
Write out   5t^2                    3t                            5t^2
                 -------- .  Invert --------- and multiply ---------- by the result:
                  8x^2                 (x^2)                         8x^2

                5t^2
multiply ---------- by the result:      5t^2       5*x^2     25 t^2 x^2
                8x^2                            ------- * ---------  = ----------------
                                                    8x^2         3t         8x^2 (3t)

Reducing this, we get       25t
                                        -------
                                         24x


3 0
3 years ago
Find two vectors in R2 with Euclidian Norm 1<br> whoseEuclidian inner product with (3,1) is zero.
alina1380 [7]

Answer:

v_1=(\frac{1}{10},-\frac{3}{10})

v_2=(-\frac{1}{10},\frac{3}{10})

Step-by-step explanation:

First we define two generic vectors in our \mathbb{R}^2 space:

  1. v_1 = (x_1,y_1)
  2. v_2 = (x_2,y_2)

By definition we know that Euclidean norm on an 2-dimensional Euclidean space \mathbb{R}^2 is:

\left \| v \right \|= \sqrt{x^2+y^2}

Also we know that the inner product in \mathbb{R}^2 space is defined as:

v_1 \bullet v_2 = (x_1,y_1) \bullet(x_2,y_2)= x_1x_2+y_1y_2

So as first condition we have that both two vectors have Euclidian Norm 1, that is:

\left \| v_1 \right \|= \sqrt{x^2+y^2}=1

and

\left \| v_2 \right \|= \sqrt{x^2+y^2}=1

As second condition we have that:

v_1 \bullet (3,1) = (x_1,y_1) \bullet(3,1)= 3x_1+y_1=0

v_2 \bullet (3,1) = (x_2,y_2) \bullet(3,1)= 3x_2+y_2=0

Which is the same:

y_1=-3x_1\\y_2=-3x_2

Replacing the second condition on the first condition we have:

\sqrt{x_1^2+y_1^2}=1 \\\left | x_1^2+y_1^2 \right |=1 \\\left | x_1^2+(-3x_1)^2 \right |=1 \\\left | x_1^2+9x_1^2 \right |=1 \\\left | 10x_1^2 \right |=1 \\x_1^2= \frac{1}{10}

Since x_1^2= \frac{1}{10} we have two posible solutions, x_1=\frac{1}{10} or x_1=-\frac{1}{10}. If we choose x_1=\frac{1}{10}, we can choose next the other solution for x_2.

Remembering,

y_1=-3x_1\\y_2=-3x_2

The two vectors we are looking for are:

v_1=(\frac{1}{10},-\frac{3}{10})\\v_2=(-\frac{1}{10},\frac{3}{10})

5 0
3 years ago
HELP PLEASE ONE QUESTION!!!!
Nezavi [6.7K]
The answer should be 53°
8 0
3 years ago
What is the vertex of the parabola given by = -(x-2)^2-1?
weqwewe [10]
Rewrite the parabola in standard form and use this formula to find the vertex (h,k).
= (2,-1)

3 0
3 years ago
Other questions:
  • Which of the following represents a function​
    10·1 answer
  • Help please...............
    5·2 answers
  • Evaluate the expression when x = 11-2
    15·2 answers
  • Can someone PLEASEE help me I’m confused and I’ll give 20 points
    13·2 answers
  • If A and B are independent events, P(A) = 0.25, and P(B) = 0.3, what is P(AB)?
    11·1 answer
  • What is the image point of (0,1) after the transformation D4 R90?<br> Please and thank you
    8·1 answer
  • Here is the question again
    5·1 answer
  • How do i find the diameter of a circle with only knowing the area?
    7·2 answers
  • If 3x+2=5/9, what is the value of −3x+8?
    10·1 answer
  • The diagram shows a 15-meter wire attached to the top of a telephone pole. The wire is attached to the ground at a point 6 meter
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!