Suppose a sand-colored rat lives in the desert. Its cameoflague against the sand helps it survive, but if the desert were covered in ash, its numbers would decrease because it doesn't have cameoflague anymore and can be easily spotted by predators.
Ooh this will be good
So blood let’s say starts in the left atrium where it goes down through the mitral valve into the left ventricle. From the left ventricle of the blood is pushed through the aorta and from there through the various branches of the body eventually allowing oxygen rich blood to flow all across the body. Once this blood is picked up by veins as deoxygenated blood it goes back to the heart through the inferior and superior vena cava. From there the deoxygenated blood is sent into the right atrium, through the tricuspid vale into the right ventricle, through the pulmonic valve into the pulmonary artery and into the lungs for re-oxygenation. The re-oxygenated blood (oxygen rich blood) now goes through the pulmonary veins into the left atrium and the cycle beings again.
Remember this, Left side of heart is for oxygenated blood, Right side of heart is for deoxygenated blood.
Artery takes oxygen rich blood away from heart itself
Vein takes oxygen poor blood back into the heart
Exceptions, Pulmonary Artery takes oxygen poor blood away from heart and into lungs
Pulmonary vein takes oxygen rich blood into the left atrium to be pushed to the rest of e body.
Answer:
Yes! ( True )
Explanation:
Water is called the "universal solvent" because it is capable of dissolving more substances than any other liquid. ... Water molecules have a polar arrangement of oxygen and hydrogen atoms—one side (hydrogen) has a positive electrical charge and the other side (oxygen) had a negative charge
<span>Much of our understanding of the basic structure and composition of Earth and the other planets in our solar system is not strenuously debated. We can infer a surprising amount of information from the size, mass and moment of inertia of the planets, all of which can be determined from routine astronomical observations. Measurements of surface chemical composition, either by direct sampling (as has been done on Earth, the moon, and Mars) or through spectroscopic observations, can be used to estimate elemental abundances and the degree of chemical differentiation that occurred as the planets condensed from the solar nebula. Remote observations of the gravitational field can be used to understand how a planet's mass is distributed, whereas the strength and shape of the magnetic field provides some constraint on the structure of a metallic core. The specifics of structure and composition, however, are much more debatable. And it is these details that tell us a much more extensive and ultimately more interesting story about the internal dynamics of the planets and their evolution. As a result, trying to determine them is frontier research in almost all fields of earth and planetary science.
</span>
hope that helped *smiles*