I believe the answer you are looking for is Static Friction. Static Friction is the force that holds an object in place until it starts to move. Then it switches to rolling friction.
For example, if you have a 1/2 ton truck sitting in front of you and the truck is in neutral. (meaning it can roll if pushed). The truck is extremely hard to move at first. That is because static friction is holding it in place until the amount of force exceeds the limit of static friction.
So if we continue to push at the truck and you feel it starting to move, then once it starts moving it is much easier to push, that is because we moved past static friction to rolling friction. Rolling friction is what helps slow things down. If you roll a ball across a carpet floor it eventually comes to a stop.
<h3>1.<u> Answer;</u></h3>
False
<h3><u>Explanation;</u></h3>
Bases have some of the following properties;
- They have a bitter taste
- They have a slimy, or soapy feel on fingers
- Most bases react with acids and precipitate salts.
- Strong bases may react violently with acids.
- Bases turn red litmus paper blue
<h3>2. <u>Answer;</u></h3>
An acid
<h3><u>Explanation;</u></h3>
- When acids are dissolved in water, the concentration of the acid decreases and it becomes dilute.
- It dissociates in water to give H+ ions or hydrogen ions.
- All acidic solutions contain more hydrogen ions than hydroxide ions, therefore when added to water it increases the concentration of H+ ions in water, as water is a neutral substance whose concentration of H+ ions is equal to OH-.
Answer:
No reaction is observed
Explanation:
The benzene ring is aromatic. Being an aromatic ring, the benzene ring is remarkably stable to all reactions that destroy the aromatic ring.
Alkenes are oxidized to alkanols in the presence of KMnO4 but this reaction does not occur with benzene. However, substituted benzenes having hydrogen atoms attached to the substituent carbon atom can be oxidized to the corresponding carboxylic acid.
Explanation:
The number of moles of solute present in liter of solution is defined as molarity.
Mathematically, Molarity = 
Also, when number of moles are equal in a solution then the formula will be as follows.

It is given that
is 8.00 M,
is 7.00 mL, and
is 0.80 M.
Hence, calculate the value of
using above formula as follows.



= 70 ml
Thus, we can conclude that the volume after dilution is 70 ml.
<span>H2CO3 <---> H+ + HCO3-
NaHCO3 <---> Na+ + HCO3-
When acid is added in the buffer, the excess H+ of that acid reacts with HCO3- to form H2CO3, and due to this NaHCO3 dissociates into HCO3- to attain the equilibrium. and hence there is no net effect of H+ due to pH remain almost constant.
when a base is added to the buffer, the OH- ion of base react eith H+ ion present in buffer, then to attain equilibrium of H+ ion, the H2CO3 dissociates to produce H+ ion, but now there is the excess of HCO3- due to which Na+ ion react with them to attain equilibrium of HCO3-. hence there is again no net change in H+ ion due to which pH remain constant.....</span>