Correct answer choice is :
B) Chemistry
Explanation:
Advanced titanium-based compounds have been also used for some years for extremely stressed femoral segment stalks. Both metal samples present a higher impedance to pitting, crack, and galvanic corrosion, stress corrosion weakening and corrosion burnout than polished stainless steel of comparatively low power properties. For this purpose, the low element power of hip prostheses made of the recent stuff is paid for by a larger cross-section of the prosthetic stem, this depending on the geometric situations of the femur.
Extensive properties, such as mass and volume, depend on the amount of matter being measured. Intensive properties, such as density and color, do not depend on the amount of the substance present. Physical properties can be measured without changing a substance's chemical identity.
Answer: The answer is no
Explanation: Earth minerals & metal ores like gold, silver, and iron can be considered nonrenewable resources sometimes since they're similarly formed from geological processes.
I hope this helps! :)
The answer is number two here is an explanation of why I said number two ....
In chemistry, orbital hybridisation is the concept of mixing atomic orbitals into new hybrid orbitals suitable for the pairing of electrons to form chemical bonds in valence bond theory.
Answer:
0.100 M AlCl₃
Explanation:
The variation of boiling point by the addition of a nonvolatile solute is called ebullioscopy, and the temperature variation is calculated by:
ΔT = W.i
Where W = nsolute/msolvent, and i is the Van't Hoff factor. Because all the substances have the same molarity, n is equal for all of them.
i = final particles/initial particles
C₆H₁₂O₆ don't dissociate, so final particles = initial particles => i = 1;
AlCl₃ dissociates at Al⁺³ and 3Cl⁻, so has 4 final particles and 1 initial particle, i = 4/1 = 4;
NaCl dissociates at Na⁺ and Cl⁻ so has 2 final particles and 1 initial particle, i = 2/1 = 2;
MgCl₂ dissociates at Mg⁺² and 2Cl⁻, so has 3 final particles and 1 initial particle, i = 3/1 = 3.
So, the solution with AlCl₃ will have the highest ΔT, and because of that the highest boiling point.