1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prisoha [69]
3 years ago
10

What is the circumference of circle P? Express your answer in terms of π.

Mathematics
1 answer:
Zolol [24]3 years ago
7 0

Answer:

Circumference of a circle= 2\pi r

Step-by-step explanation:

The circumference of any circle is the total length of its boundary which can be calculated by the formula:

                Circumference of a circle= 2\pi r

               Where 'r' is the radius of the circle

For, the given circle the circumference can be find in terms of \pi  by putting some value of radius in the formula, which gives the circumference in terms of \pi.

You might be interested in
A poll was conducted by a home mortgage company regarding home ownership in the United States. The company polled 1,488 American
____ [38]

If the sample size is 1488 and confidence interval of 99% then the margin of error is 0.03088.

Given sample size of 1488, percentage of those polled own a home be 69% and confidence level be 99%.

We are required to find the approximate margin of error.

Margin of error is the difference between calculated values and real values.

n=1488

p=0.69

Margin of error=z*\sqrt{p(1-p)/n}

Z score when confidence level is 99%=2.576.

Margin of error=2.576*\sqrt{0.69(1-0.69)/1488}

=2.576*\sqrt{(0.69*0.31)/1488}

=2.576*\sqrt{0.2139/1488}

=2.576*\sqrt{0.0001437}

=2.576*0.01198

=0.03088

Hence if the sample size is 1488 and confidence interval of 99% then the margin of error is 0.03088.

Learn more about margin of error at brainly.com/question/10218601

#SPJ1

3 0
2 years ago
Please help I need to get this correct
ZanzabumX [31]

Answer: i think the answer is 2

Step-by-step explanation:

sorry if im wrong please forgive me

3 0
3 years ago
It takes Meredith 30 minutes to walk to the library. It takes her 40% if that time when she rides her bike to the library. How l
IrinaK [193]

Answer:

hmmmmmmmmmmmmmmmm 4

Step-by-step explanation:

4 0
3 years ago
The angle bisectors of AXYZ are XG, YG, and ZG. They meet at a single point G.
Harrizon [31]

Answer:

m∠FXD = 36°

EG = 10

m∠FZG = 24°

Step-by-step explanation:

In triangle XYZ, G is the incenter of the triangle.

Since, m∠FXG = 18°

And m∠FXD = 2(m∠FXG)

                     = 2 × 18°

                     = 36°

Since, point G is equidistant from all sides (Property of incenter of a triangle)

Therefore, DG = EG = GF = 10

Since, m∠X + m∠Y + m∠Z = 180°

2(m∠FXG) + m∠DYE + 2(m∠FZG) = 180°

2(18)° + 96° + 2(m∠FZG) = 180°

2(m∠FZG) = 180° - 132°

m∠FZG = 24°

3 0
3 years ago
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • Tylenol elixir 325mg per 12.5ml the doctor ordered 260 mg how many mil would you give
    8·1 answer
  • Ryan bought a digital camera with a list price of $150 from an online store offering a 5% discount. He needs to pay $5.50 for sh
    12·2 answers
  • Admission to a baseball game is $4.00 for general admission and $4.50 for reserved seats. The receipts were $5150.00 for 1255 pa
    13·1 answer
  • How can you find the volume of a rectangular prism
    12·2 answers
  • Solve for x.<br> 300<br> 4x + 12
    12·2 answers
  • How to solve and what is the answer
    9·1 answer
  • (-247.43)(-5) = (-1)(247.43)-1)(5)
    7·2 answers
  • I need help with both of these
    6·1 answer
  • What is 199 times 347
    8·2 answers
  • 2x(2x-3)-3x(x-2) need help on this
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!