The answer is: 24^2x-64x-24
Sin^-1(5/13) = 22.6
sin(22.6/2) = 0.196
Answer:
![(x + (3+5i))^2 = x^2 + 6x + (10x+30)i - 16](https://tex.z-dn.net/?f=%28x%20%2B%20%283%2B5i%29%29%5E2%20%3D%20x%5E2%20%2B%206x%20%2B%20%2810x%2B30%29i%20-%2016)
Step-by-step explanation:
Complex numbers identity:
The complex numbers identity is:
![i^2 = -1](https://tex.z-dn.net/?f=i%5E2%20%3D%20-1)
Square of the sum:
![(x + y)^2 = x^2 + 2xy + y^2](https://tex.z-dn.net/?f=%28x%20%2B%20y%29%5E2%20%3D%20x%5E2%20%2B%202xy%20%2B%20y%5E2)
In this question:
![(x + (3+5i))^2](https://tex.z-dn.net/?f=%28x%20%2B%20%283%2B5i%29%29%5E2)
![x^2 + 2x(3+5i) + (3+5i)^2](https://tex.z-dn.net/?f=x%5E2%20%2B%202x%283%2B5i%29%20%2B%20%283%2B5i%29%5E2)
![x^2 + 6x + 10xi + 9 + 30i + 25i^2](https://tex.z-dn.net/?f=x%5E2%20%2B%206x%20%2B%2010xi%20%2B%209%20%2B%2030i%20%2B%2025i%5E2)
![x^2 + 6x + 9 + (10x+30)i - 25](https://tex.z-dn.net/?f=x%5E2%20%2B%206x%20%2B%209%20%2B%20%2810x%2B30%29i%20-%2025)
![x^2 + 6x + (10x+30)i - 16](https://tex.z-dn.net/?f=x%5E2%20%2B%206x%20%2B%20%2810x%2B30%29i%20-%2016)
So
![(x + (3+5i))^2 = x^2 + 6x + (10x+30)i - 16](https://tex.z-dn.net/?f=%28x%20%2B%20%283%2B5i%29%29%5E2%20%3D%20x%5E2%20%2B%206x%20%2B%20%2810x%2B30%29i%20-%2016)
Answer:
16x - 48y +24
Step-by-step explanation:
We can use the distributive property to expand:
- 8(2x - 6y + 3)
- 8 x 2x - 8 x 6y + 8 x 3
- 16x - 48y + 24
Hope this helps!!