Answer:
6
x
^2
−
5
x
y
−
4
y
^2
Step-by-step explanation:
Expand
(
2
x
+
y
)
(3
x
−
4
y
)
using the FOIL Method.
Apply the distributive property.
2
x
(
3
x
−
4
y
)
+
y
(
3
x
−
4
y
)
Apply the distributive property.
2
x
(
3
x
)+
2
x
(−
4
y
)
+
y
(
3x
−
4
y
)
Apply the distributive property.
2
x
(
3
x
)
+
2
x(
−
4
y
)
+
y
(
3
x)
+
y
(
−4
y
)
Simplify and combine like terms.
6
x
^2
−
5
x
y
−
4^
2
Answer:
x = - 4, x = 5
Step-by-step explanation:
(5x - 25)(x + 4) = 0
Equate each factor to zero and solve for x
x + 4 = 0 ⇒ x = - 4
5x - 25 = 0 ⇒ 5x = 25 ⇒ x = 5
Answer:
88
A:J
8:3
a - 40 = j
8y - 40 = 3y
5y = 40
y = 8
8 *11 = 88
Step-by-step explanation:
Hope i helped! have a nice day
What kind of Question is that. That is some real math right there.
If you're using the app, try seeing this answer through your browser: brainly.com/question/3242555——————————
Solve the trigonometric equation:

Restriction for the solution:

Square both sides of
(i):

![\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2%5Ccdot%20%281-sin%5E2%5C%2Cx%29-sin%5C%2Cx%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2-2%5C%2Csin%5E2%5C%2Cx-sin%5C%2Cx%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B-%5C%2C%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2%5C%2Csin%5E2%5C%2Cx%2Bsin%5C%2Cx-2%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7Bsin%5C%2Cx%5Ccdot%20%5Cleft%5B2%5C%2Csin%5E2%5C%2Cx%2Bsin%5C%2Cx-2%20%5Cright%5D%3D0%7D)
Let

So the equation becomes

Solving the quadratic equation:



You can discard the negative value for
t. So the solution for
(ii) is

Substitute back for
t = sin x. Remember the restriction for
x:

where
k is an integer.
I hope this helps. =)