1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
charle [14.2K]
3 years ago
8

{4•[2+3•(6-2)+2]+2.

Mathematics
1 answer:
weqwewe [10]3 years ago
4 0

Answer:

66

Step-by-step explanation:

You might be interested in
Simplify: 3(2x-y)-(5x+4y-2) <br>Please show steps
il63 [147K]

Answer:

6 x ^2 − 5 x y − 4 y ^2

Step-by-step explanation:

Expand  

( 2 x + y ) (3 x − 4 y )

using the FOIL Method.

Apply the distributive property.

2 x ( 3 x − 4 y ) + y ( 3 x − 4 y )

Apply the distributive property.

2 x ( 3 x )+ 2 x (− 4 y ) + y ( 3x − 4 y )

Apply the distributive property.

2 x ( 3 x ) + 2 x( − 4 y ) + y ( 3 x) + y ( −4 y )

Simplify and combine like terms.

6 x ^2 − 5 x y − 4^ 2

7 0
2 years ago
Read 2 more answers
(5x-25)(x+4)=0<br> What’s the answer
NemiM [27]

Answer:

x = - 4, x = 5

Step-by-step explanation:

(5x - 25)(x + 4) = 0

Equate each factor to zero and solve for x

x + 4 = 0 ⇒ x = - 4

5x - 25 = 0 ⇒ 5x = 25 ⇒ x = 5

7 0
2 years ago
Read 2 more answers
The ratio of Alex's toy cars to Jim's is 8:3. How many toy cars do they have altogether, if Alex has 40 more cars than Jim?
aniked [119]

Answer:

88

A:J

8:3

a - 40 = j

8y - 40 = 3y

5y = 40

y = 8

8 *11 = 88

Step-by-step explanation:

Hope i helped!  have a nice day

5 0
3 years ago
Read 2 more answers
What is the perimeter of a regular heptagon with a side length of 9 inches?
jok3333 [9.3K]
What kind of Question is that. That is some real math right there.
6 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • A chef is going to use a mixture of two brands of Italian dressing. The first brand contains 9% vinegar, and the second brand co
    5·1 answer
  • Help plz and thank u
    9·1 answer
  • Given: AC and DB are diameters. <br> m∠3=
    15·2 answers
  • Gradient answer it for bare points
    8·1 answer
  • Please help me!! thank you
    7·2 answers
  • Find the distance between the two points rounding to the nearest tenth (if necessary).
    11·1 answer
  • For questions 2-5, the number of pieces in a regular bag of Skittles is approximately normally distributed with a mean of 38.4 a
    9·1 answer
  • Round this number to the nearest 100 4,398,202
    14·1 answer
  • Steven has 163 paper clips. He is going to keep 27 for himself, and divide the rest among 8 of his friends. How many paper clips
    6·1 answer
  • Which math expression means "the product of 16 and 26"?<br> 16 +26<br> O 16.26<br> 15 - 26<br> 26-16
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!