<span><span> y2(q-4)-c(q-4)</span> </span>Final result :<span> (q - 4) • (y2 - c)
</span>
Step by step solution :<span>Step 1 :</span><span>Equation at the end of step 1 :</span><span><span> ((y2) • (q - 4)) - c • (q - 4)
</span><span> Step 2 :</span></span><span>Equation at the end of step 2 :</span><span> y2 • (q - 4) - c • (q - 4)
</span><span>Step 3 :</span>Pulling out like terms :
<span> 3.1 </span> Pull out q-4
After pulling out, we are left with :
(q-4) • (<span> y2</span> * 1 +( c * (-1) ))
Trying to factor as a Difference of Squares :
<span> 3.2 </span> Factoring: <span> y2-c</span>
Theory : A difference of two perfect squares, <span> A2 - B2 </span>can be factored into <span> (A+B) • (A-B)
</span>Proof :<span> (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 <span>- AB + AB </span>- B2 =
<span> A2 - B2</span>
</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication.
Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.
Check : <span> y2 </span>is the square of <span> y1 </span>
Check :<span> <span> c1 </span> is not a square !!
</span>Ruling : Binomial can not be factored as the difference of two perfect squares
Final result :<span> (q - 4) • (y2 - c)
</span><span>
</span>
Answer:
1.one solution is the answer
Step-by-step explanation:
Answer:
B. 56°
Step-by-step explanation:
We are given that m∠R is 66° and m∠T is 122°.
We can apply the supplementary rule since ∠S and ∠T are a linear pair. So, we can use ∠T to find ∠S through 180° - 122° = 58°.
Now, we can use ∠R and ∠S to find ∠Q.
66° + 58° = 124°
180° - 124° = 56°
Add 73 + 15 + 8 then subtract it from 190 :) hope I helped
"The quotient of z and 4"
is the same as saying
"z divided by 4"
z/4