1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvv77 [185]
3 years ago
5

There are five marbles in a bag. Three are green and two are yellow. You draw a

Mathematics
1 answer:
algol133 years ago
7 0

Answer: 2/5 chance

Step-by-step explanation: Since there are 5 marbles and 3 aren't yellow, you have a 2/5 chance to choose the other two yellow marbles

You might be interested in
Decrease 1400 in the ratio 7:3 show calculation
Dmitry [639]

From the ratio computed, the numbers will be 420 and 980.

<h3>How to calculate the ratio</h3>

From the information given, we are to divide 1400 in the ratio 7:3. The smaller number will be:

= 3/(3+7) × 1400

= 3/10 × 1400

= 420

The larger number will be:

= 7/10 × 1400

= 980

Therefore, the numbers will be 420 and 980.

Learn more about ratio on:

brainly.com/question/2328454

8 0
3 years ago
Hahaahaahhahahahahhaha no one can do this I bet but I need help my teacher explained it in a confusing way
Olegator [25]

Answer: question 5 is C

Question 6 is C

Question 7 is B

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Write an expression that represents sarah's total pay last week. represent her hourly wage with
Nostrana [21]
Whats her hourly wage and where is the rest of the question this is very confusing there are no details so i cannot help you sorry
5 0
3 years ago
Tell whether x and y are proportional when y/x=3
mars1129 [50]

Answer:

y is directly proportional to x

Step-by-step explanation:

if y/x = 3

then, y = 3x.

5 0
3 years ago
If the integral of the product of x squared and e raised to the negative 4 times x power, dx equals the product of negative 1 ov
Nataly_w [17]

Answer:

A + B + E = 32

Step-by-step explanation:

Given

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

Required

Find A +B + E

We have:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

Using integration by parts

\int {u} \, dv = uv - \int vdu

Where

u = x^2 and dv = e^{-4x}dx

Solve for du (differentiate u)

du = 2x\ dx

Solve for v (integrate dv)

v = -\frac{1}{4}e^{-4x}

So, we have:

\int {u} \, dv = uv - \int vdu

\int\limits {x^2\cdot e^{-4x}} \, dx  = x^2 *-\frac{1}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x} 2xdx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} - \int -\frac{1}{2}e^{-4x} xdx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} \int xe^{-4x} dx

-----------------------------------------------------------------------

Solving

\int xe^{-4x} dx

Integration by parts

u = x ---- du = dx

dv = e^{-4x}dx ---------- v = -\frac{1}{4}e^{-4x}

So:

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x}\ dx

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x} + \int e^{-4x}\ dx

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x}  -\frac{1}{4}e^{-4x}

So, we have:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} \int xe^{-4x} dx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} [ -\frac{x}{4}e^{-4x}  -\frac{1}{4}e^{-4x}]

Open bracket

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} -\frac{x}{8}e^{-4x}  -\frac{1}{8}e^{-4x}

Factor out e^{-4x}

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{x^2}{4} -\frac{x}{8} -\frac{1}{8}]e^{-4x}

Rewrite as:

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{1}{4}x^2 -\frac{1}{8}x -\frac{1}{8}]e^{-4x}

Recall that:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{1}{64}Ax^2 -\frac{1}{64} Bx -\frac{1}{64} E]Ce^{-4x}

By comparison:

-\frac{1}{4}x^2 = -\frac{1}{64}Ax^2

-\frac{1}{8}x = -\frac{1}{64}Bx

-\frac{1}{8} = -\frac{1}{64}E

Solve A, B and C

-\frac{1}{4}x^2 = -\frac{1}{64}Ax^2

Divide by -x^2

\frac{1}{4} = \frac{1}{64}A

Multiply by 64

64 * \frac{1}{4} = A

A =16

-\frac{1}{8}x = -\frac{1}{64}Bx

Divide by -x

\frac{1}{8} = \frac{1}{64}B

Multiply by 64

64 * \frac{1}{8} = \frac{1}{64}B*64

B = 8

-\frac{1}{8} = -\frac{1}{64}E

Multiply by -64

-64 * -\frac{1}{8} = -\frac{1}{64}E * -64

E = 8

So:

A + B + E = 16 +8+8

A + B + E = 32

4 0
3 years ago
Other questions:
  • Find the median for the following set of number 5,19,2,28,25
    12·1 answer
  • Round 136 to the nearest ten.​
    8·2 answers
  • According to a recent​ census, 14.6​% of all housing units in a certain country are vacant. A county supervisor wonders if her c
    9·1 answer
  • Solve the system using the substitution method<br> 3x-y=4<br> 5x+3y=9
    10·1 answer
  • Write the equation for the vertical line that contains point E(–7, 7).
    7·2 answers
  • HCF of algebraic expression x square minus y square and x y minus y square. ​
    7·1 answer
  • This Is my question ​
    7·1 answer
  • HELP ME PLEASE!!!!!!!!!!!!
    13·1 answer
  • For the following right triangle, find the side length x. Round your answer to the nearest hundredth.
    13·1 answer
  • What is the value of x when h(x) = −3?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!