keeping in mind that radius is half the diameter, we know this cone has a diameter of 2 inches, so it has a radius of 1 inch, kinda small really for ice-cream, but anyhow.
![\textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=1\\ h=6 \end{cases}\implies V=\cfrac{\pi (1)^26}{3}\implies V=2\pi \implies \underset{\textit{rounded up}}{V\approx 6}](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D1%5C%5C%20h%3D6%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%281%29%5E26%7D%7B3%7D%5Cimplies%20V%3D2%5Cpi%20%5Cimplies%20%5Cunderset%7B%5Ctextit%7Brounded%20up%7D%7D%7BV%5Capprox%206%7D)
That would be
cos x
sin x + cos x * --------
sin x
sin x
Mult sin x by ----------
sin x
to obtain
(sin x)^2
------------
sin x
and then add
(cos x)^2
-------------
sin x
with the outcome being
(sin x)^2 + (cos x)^2 1
--------------------------- = --------- = cos x (answer)
sin x sin x
This is the answer yeah I not sure but I saw it somewhere