Including all real and imaginary zeros and taking multiplicities into account, every equation of degree n has exactly n roots
Answer:
a) The total gross sales over the next 2 weeks exceeds $5000 is 0.0321.
b) The weekly sales exceed $2000 in at least 2 of the next 3 weeks is 0.9033.
Step-by-step explanation:
Given : The gross weekly sales at a certain restaurant are a normal random variable with mean $2200 and standard deviation $230.
To find : What is the probability that
(a) the total gross sales over the next 2 weeks exceeds $5000;
(b) weekly sales exceed $2000 in at least 2 of the next 3 weeks? What independence assumptions have you made?
Solution :
Let
and
denote the sales during week 1 and 2 respectively.
a) Let
Assuming that
and
follows same distribution with same mean and deviation.




So, 





The total gross sales over the next 2 weeks exceeds $5000 is 0.0321.
b) The probability that sales exceed teh 2000 and amount in at least 2 and 3 next week.
We use binomial distribution with n=3.





Let Y be the number of weeks in which sales exceed 2000.
Now, 
So, 



The weekly sales exceed $2000 in at least 2 of the next 3 weeks is 0.9033.
The value is 57 of you minus and divide the values
cosθ = cotθ/cscθ is a true statement. The answer is option B
<h3>How to determine which of the trigonometric statements are true?</h3>
Trigonometry is a branch of mathematics dealing with the relationship between the ratios of the sides of a right-angled triangle with its angles
A. tan²θ = 1 - sec²θ
tan²θ = 1 - sec²θ
tan²θ = 1 - 1/cos²θ (Note: sec²θ = 1/cos²θ)
tan²θ = (cos²θ- 1)/cos²θ
tan²θ = -sin²θ/cos²θ (Note: cos²θ- 1 = -sin²θ)
tan²θ = -tan²θ
This statement is not true
B. cosθ = cotθ/cscθ
cosθ = cotθ/cscθ
cosθ = (1/tanθ) / (1/sinθ)
cosθ = (cosθ/sinθ).sinθ
cosθ = cosθ
This statement is true
C. 1/sec²θ = sin²θ + 1
1/sec²θ = 1/(1/cos²θ)
1/sec²θ = cos²θ
1/sec²θ = 1 - sin²θ
This statement is not true
D. sec²θ - 1 = 1/cot²θ
sec²θ - 1 = 1/cos²θ - 1
sec²θ - 1 = (1-cos²θ)/cos²θ
sec²θ - 1 = sin²θ/cos²θ
sec²θ - 1 = tan²θ
This statement is not true
E. sinθ cscθ = tan θ
sinθ cscθ = tan θ
sinθ cscθ = sinθ (1/sinθ)
sinθ cscθ = 1
This statement is not true
Therefore, the true statement is cosθ = cotθ/cscθ
Learn more about Trigonometry on:
brainly.com/question/29529966
#SPJ1