Answer:
Unfortunately, your answer is not right.
Step-by-step explanation:
The functions whose graphs do not have asymptotes are the power and the root.
The power function has no asymptote, its domain and rank are all the real.
To verify that the power function does not have an asymptote, let us make the following analysis:
The function
, when x approaches infinity, where does y tend? Of course it tends to infinity as well, therefore it has no horizontal asymptotes (and neither vertical nor oblique)
With respect to the function
we can verify that if it has asymptote horizontal in y = 0. Since when x approaches infinity the function is closer to the value 0.
For example: 1/2 = 0.5; 1/1000 = 0.001; 1/100000 = 0.00001 and so on. As "x" grows "y" approaches zero
Also, when x approaches 0, the function approaches infinity, in other words, when x tends to 0 y tends to infinity. For example: 1 / 0.5 = 2; 1 / 0.1 = 10; 1 / 0.01 = 100 and so on. This means that the function also has an asymptote at x = 0
A Coefficient is the answer
Answer:
The 98% confidence interval estimate of the proportion of adults who use social media is (0.56, 0.6034).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
Of the 2809 people who responded to survey, 1634 stated that they currently use social media.
This means that 
98% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 98% confidence interval estimate of the proportion of adults who use social media is (0.56, 0.6034).
Answer:
They are not parallel because their slopes are not equal
Step-by-step explanation:
Answer:
x=136
Step-by-step explanation:
To find the measure of the sum of the interior angles use the formula (n-2) times 180 where n is the number of sides.
A quadrilateral has 4 sides. (4-2) times 180. 2 times 180=360
The sum of the interior angles of a quadrilateral is 360.
x+47+95+82=360
x+ 224 = 360
x= 136