I believe that hair and limbs are homology because all mammals have hair and similar limb structure. Hair loss and social behavior on the other hand are homolasy because not all mammals have them. Homology is the similar traits due to common ancestry while homoplasy is similar traits for other reasons other than common ancestry.
Answer:
It enters the citric acid cycle and associates with a 4-carbon molecule, forming citric acid, and then through redox reactions regenerates the 4-carbon molecule.
Explanation:
Acetyl-CoA(2C) associates with oxalacetate(4C) to form citric acid(6C). Then through redox reactions, CO2 molecules result from decarboxylation (COOH becomes R-(R1)CH-R2). And through dehydrogenation H2 molecules are incorporated in NADH+ in FADH2, resulting in the 4-carbon molecule at the beginning (oxalacetate). That's why it's called a cycle(Kreb's cycle or citric acid cycle)
Answer:
The correct answer is oxygen.
Explanation:
Hope this helped Mark BRAINLEST!!
Answer:
1. fragmentation- genetically identical
2. budding- genetically identical
3. haploid cells from two different mycelia fuse to form a zygote- genetically distinct
4. one hyphae creates spores through mitosis- genetically identical
Explanation:
1) Fragmentation is a form of asexual reproduction i.e. one parent, employed by certain organisms including fungi in which a FRAGMENT breaks off from the single parent to produce new cells. Since it is an asexual reproduction, the resulting cells will be GENETICALLY IDENTICAL.
2) Budding is another form of asexual reproduction that fungi undergoes e.g yeast. In the budding process, buds develop on the parent cell and later grow into mature cells that are GENETICALLY IDENTICAL to the parent cell.
3) In fungi, two different mycelia can produce haploid sex cells via the process of meiosis, which then fuse to produce a ZYGOTE. This method is a sexual means of reproduction. Hence, the zygote formed will be GENETICALLY DISTINCT from the parent.
4) Hyphae (threadlike filaments) of a fungi can via MITOTIC DIVISION produce spores, which then germinates under favorable conditions and grows into a new fungus. This new fungus cell is GENETICALLY IDENTICAL to the parent hyphae.