Answer:
940.8 N
1254.4 N
Step-by-step explanation:
I would think the questions would be to calculate the forces at the top of the cube and at the sides. Thus:
On the top:
F = pressure * area
P = density * gravity * height
the height would be:
1m - 0.4m = 0.6m
replacing:
P = 1000 * 9.8 * 0.6 = 5880
A = (0.4) ^ 2 = 0.16
F = 5880 * 0.16
F = 940.8 N
On the sides:
dF = d * g * h * dA
dA = 0.4 * dh replacing
dF = 1000 * 9.8 * h * 0.4 * dh
dF = 3920 * h * dh
We integrate both sides and we have:
F = 3920 * (h ^ 2/2), h = 0.6 up to h = 1
F = (3920/2) * (1 ^ 2 - 0.6 ^ 2)
F = 1254.4 N
Answer:
3 + 9i
Step-by-step explanation:
(4 + 2i) - (1 - 7i)
distribute the (-)
(4 + 2i) - 1 + 7i
combine like terms
3 + 9i
Answer:
(9, 6)
Step-by-step explanation:
the given points are
(3, 2)
(6, 4)
so, can you see, how the sequence continues ?
I see immediately that for every 3 additional units of x we add 2 units of y.
so, yes, the next point in the sequence is
(6 + 3, 4 + 2) = (9, 6).
so, this point (or ordered pair) follows the same ratio or proportional relationship between x and y as the points already in the graph.
in other words, they are on the same line following the same slope ("y coordinate change / x coordinate change" when going from one point on the line to another).
Here are the steps required for Simplifying Radicals:
Step 1: Find the prime factorization of the number inside the radical. Start by dividing the number by the first prime number 2 and continue dividing by 2 until you get a decimal or remainder. Then divide by 3, 5, 7, etc. until the only numbers left are prime numbers. Also factor any variables inside the radical.
Step 2: Determine the index of the radical. The index tells you how many of a kind you need to put together to be able to move that number or variable from inside the radical to outside the radical. For example, if the index is 2 (a square root), then you need two of a kind to move from inside the radical to outside the radical. If the index is 3 (a cube root), then you need three of a kind to move from inside the radical to outside the radical.
Step 3: Move each group of numbers or variables from inside the radical to outside the radical. If there are nor enough numbers or variables to make a group of two, three, or whatever is needed, then leave those numbers or variables inside the radical. Notice that each group of numbers or variables gets written once when they move outside the radical because they are now one group.
Step 4: Simplify the expressions both inside and outside the radical by multiplying. Multiply all numbers and variables inside the radical together. Multiply all numbers and variables outside the radical together.
Shorter version:
Step 1: Find the prime factorization of the number inside the radical.
Step 2: Determine the index of the radical. In this case, the index is two because it is a square root, which means we need two of a kind.
Step 3: Move each group of numbers or variables from inside the radical to outside the radical. In this case, the pair of 2’s and 3’s moved outside the radical.
Step 4: Simplify the expressions both inside and outside the radical by multiplying.
Answer:
∆STR ~ ∆RTQ
Step-by-step explanation:
For two fugures to be considered similar, it means the corresponding sides are proportional, and as such, the ratio of their corresponding sides are equal.
However, the corresponding angles of two similar figures are the same and equal.
Taking a look at the figure of the triangle given, ∆STR is a right angle triangle, and it is similar to ∆RTQ as the angle formed at <T in ∆RTQ = 90°.
<T in ∆STR = <T in ∆RTQ.
Therefore, the correct similarity statement is ∆STR ~ ∆RTQ.
The last option is correct.